

Tempered distributions

Christoph Börgers

Department of Mathematics, Tufts University

February 2026

Intended readers: At roughly the level of a first-year graduate student of mathematics.

Specific prerequisites include parts 1 and 2 of my notes on Fourier transforms, and some introductory graduate-level analysis

Feedback: If you find this useful, or if you have comments or suggestions, or if you just want to say hello, I would very much enjoy hearing from you: cborgers@tufts.edu.

Contents

1 Purpose of these notes	1
2 Locally integrable functions as linear functionals on \mathcal{D}	2
3 Locally integrable, polynomially growing functions as linear functionals on \mathcal{S}	3
4 How about domains other than \mathcal{D} and \mathcal{S}?	4
5 Derivatives of linear functionals	4
6 Fourier transforms of linear functionals	5
7 Convolving linear functionals with test functions	8
8 The first place where continuity matters: smoothness of convolutions	8
9 A discontinuous linear functional on the Schwartz space	10
10 Tempered distributions are limits of functions in \mathcal{C}_c^∞	11
11 The Fourier transform of x^2	12

1 Purpose of these notes

This is *not* a comprehensive introduction to tempered distributions, but just a brief review of what tempered distributions are. I have added some intuition and motivation that had not previously been entirely clear to me.

All functions in these notes are assumed to be defined on \mathbb{R} , with values in \mathbb{C} . We write:

$$\mathcal{D} = C_c^\infty \quad \text{and} \quad \mathcal{S} = \text{Schwartz space.}$$

A *distribution* is a continuous linear functional on \mathcal{D} . The motivation is as follows. A locally integrable function $f = f(x)$ can be identified with the linear functional

$$F_f: \mathcal{D} \rightarrow \mathbb{C}, \quad (1)$$

$$\varphi \mapsto \int_{-\infty}^{\infty} f(x) \varphi(x) dx. \quad (2)$$

Knowing F_f , we can back out f . I'll very briefly review why this is so shorty. But there are also linear functionals on \mathcal{D} that don't come from functions. The most famous example is

$$\varphi \mapsto \varphi(0).$$

Another interesting example is

$$\varphi \mapsto \lim_{r \rightarrow \infty} \int_{-r}^r \frac{\varphi(x)}{x} dx.$$

Distributions offer a way of viewing these examples as generalized functions.

If \mathcal{D} is replaced by \mathcal{S} , one obtains the notion of *tempered distributions*. Then local integrability is no longer sufficient to guarantee the existence of the integrals $\int_{-\infty}^{\infty} f(x) \varphi(x) dx$. One has to assume also that $f(x)$ does not grow too fast as $x \rightarrow \pm\infty$. I will discuss this, and I will discuss the reason *why* one might want to replace \mathcal{D} by \mathcal{S} , and whether one might be able to make choices other than \mathcal{D} or \mathcal{S} .

The notion of *continuity* of linear functionals that is used here is extremely weak, so weak that it is hard to find examples of linear functionals that are *not* continuous. Why this continuity requirement is needed at all will be discussed later in these notes; initially, it isn't needed.

2 Locally integrable functions as linear functionals on \mathcal{D}

Definition 1. A measurable function $f: \mathbb{R} \rightarrow \mathbb{C}$ is called *locally integrable* if for all real a and b with $a < b$, $f \cdot 1_{[a,b]} \in L^1$. The vector space of all locally integrable functions is denoted by L^1_{loc} .

Theorem 1. If $\psi \in \mathcal{D}$ has integral 1, and if $\psi_\varepsilon(x) = \frac{1}{\varepsilon} \psi\left(\frac{x}{\varepsilon}\right)$ for $\varepsilon > 0$, then

$$\forall f \in L^1_{\text{loc}} \quad f(x) = \lim_{\varepsilon \rightarrow 0^+} \int_{-\infty}^{\infty} f(y) \psi_\varepsilon(x-y) dy \quad \text{for almost all } x.$$

This is a well-known fact of analysis. It follows from the Lebesgue differentiation theorem:

Lebesgue differentiation theorem. Let $f \in L^1_{\text{loc}}$. Then

$$f(x) = \lim_{\varepsilon \rightarrow 0^+} \frac{1}{2\varepsilon} \int_{x-\varepsilon}^{x+\varepsilon} f(y) dy \quad \text{for almost all } x.$$

Theorem 1 implies that the linear functional F_f (see eqs. (1), (2)) determines the function f almost everywhere. (Of course, "almost everywhere" is the best one can expect. After all, f is only *defined* almost everywhere.)

3 Locally integrable, polynomially growing functions as linear functionals on \mathcal{S}

Definition 2. A function $f \in L^1_{\text{loc}}$ is called polynomially growing if there exists an $n \in \mathbb{N}$ and a constant $C > 0$ so that

$$\limsup_{|x| \rightarrow \infty} |f(x)| \leq C|x|^n.$$

The space of all such functions is denoted by $L^1_{\text{loc,poly}}$.

Theorem 2. If $\psi \in \mathcal{S}$ has integral 1, and if $\psi_\varepsilon(x) = \frac{1}{\varepsilon} \psi\left(\frac{x}{\varepsilon}\right)$ for $\varepsilon > 0$, then

$$\forall f \in L^1_{\text{loc,poly}} \quad f(x) = \lim_{\varepsilon \rightarrow 0^+} \int_{-\infty}^{\infty} f(y) \psi_\varepsilon(x-y) dy \quad \text{for almost all } x.$$

This, too, follows from the Lebesgue differentiation theorem: It implies that the linear functional

$$\begin{aligned} F_f: \mathcal{S} &\rightarrow \mathbb{C}. \\ \varphi &\mapsto \int_{-\infty}^{\infty} f(x) \varphi(x) dx \end{aligned}$$

determines the function f almost everywhere. The assumption of (at most) polynomial growth is needed to ensure that the integrals $\int_{-\infty}^{\infty} f(x) \varphi(x) dx$, $\varphi \in \mathcal{S}$, exist.

4 How about domains other than \mathcal{D} and \mathcal{S} ?

One could consider other spaces on which to study linear functionals. I will think a bit about possible subspaces $\mathcal{V} \subseteq \mathcal{S}$ other than \mathcal{D} and \mathcal{S} . The functions in \mathcal{V} are called *test functions* in this context.

Notation:

$\mathcal{V}^* = \text{space of linear functionals } \mathcal{V} \rightarrow \mathbb{C} \text{ (without any continuity condition)}$

In light of Theorem 2, one might consider taking \mathcal{V} to be the much smaller space

$$\mathcal{G} = \text{span} \left\{ e^{-(x-\mu)^2/(2\sigma^2)} : \mu \in \mathbb{R}, \sigma > 0 \right\}$$

for instance. The space $L^1_{\text{loc,poly}}$ is embedded in \mathcal{G}^* , in the sense that the functional

$$\varphi \mapsto \int_{-\infty}^{\infty} f(x)\varphi(x) dx$$

determines the function f almost everywhere if $f \in L^1_{\text{loc,poly}}$. Actually, f could even be something like e^x here, which grows faster than polynomially as $x \rightarrow \infty$. Reducing the domain, \mathcal{V} , of the linear functionals can broaden the space of functions that can be viewed as embedded in \mathcal{V}^* .

5 Derivatives of linear functionals

Definition 3. Let $\mathcal{V} \subseteq \mathcal{S}$ be a subspace that is invariant under differentiation:

$$\forall \varphi \in \mathcal{V} \quad \varphi' \in \mathcal{V}.$$

Let $F \in \mathcal{V}^*$. The derivative of F is the linear functional $F' \in \mathcal{V}^*$ defined by

$$\langle F', \varphi \rangle = -\langle F, \varphi' \rangle.$$

This is motivated by integration by parts.

Evidently \mathcal{D} and \mathcal{S} are invariant under differentiation, whereas \mathcal{G} is not. Derivatives of linear functionals on \mathcal{G} are not well-defined. However, the following larger spaces are invariant under differentiation:

$$\mathcal{H} = \text{span} \left\{ x^n e^{-(x-\mu)^2/(2\sigma^2)} : n \in \mathbb{N} \cup \{0\}, \mu \in \mathbb{R}, \sigma > 0 \right\},$$

and

$$\mathcal{I} = \text{span} \left\{ x^n e^{-(x-\mu)^2/(2\sigma^2)} : n \in \mathbb{N} \cup \{0\}, \mu \in \mathbb{C}, \sigma > 0 \right\}.$$

Linear functionals in \mathcal{D}^* , \mathcal{S}^* , \mathcal{H}^* , \mathcal{I}^* can be differentiated infinitely often.

6 Fourier transforms of linear functionals

Definition 4. Let $\mathcal{V} \subseteq \mathcal{S}$ be a subspace that is invariant under Fourier transform:

$$\forall \varphi \in \mathcal{V} \quad \hat{\varphi} \in \mathcal{V}.$$

Let $F \in \mathcal{V}^*$. The Fourier transform of F is the linear functional $\hat{F} \in \mathcal{V}^*$ defined by

$$\langle \hat{F}, \varphi \rangle = \langle F, \hat{\varphi} \rangle.$$

This is motivated by the symmetry property of the Fourier transform on L^1 .

Theorem 3. $\mathcal{D} = C_c^\infty$ is not invariant under Fourier transform. Much more strongly:

$$\varphi \in \mathcal{D} - \{0\} \Rightarrow \hat{\varphi} \notin \mathcal{D}.$$

This is the reason why \mathcal{D} is not a good domain for distributions when one wants to work with Fourier transforms.

Proof. Let $\varphi \in \mathcal{D}$. Then

$$\hat{\varphi}(t) = \int_{-\infty}^{\infty} \varphi(x) \left(\sum_{k=0}^{\infty} \frac{(ixt)^k}{k!} \right) dx = \int_{-\infty}^{\infty} \sum_{k=0}^{\infty} \varphi(x) \frac{(ix)^k}{k!} t^k dx.$$

The integral and sum can be swapped; this follows for instance from Fubini's theorem. So we obtain

$$\hat{\varphi}(t) = \sum_{k=0}^{\infty} \left(\int_{-\infty}^{\infty} \varphi(x) \frac{(ix)^k}{k!} dx \right) t^k.$$

This shows that $\hat{\varphi}$ is analytic. It therefore cannot vanish on an interval unless it vanishes everywhere. \square

It is advantageous to keep the domain of the linear functionals small. For instance, I noted earlier that the space of functions that can be thought of as elements of \mathcal{V}^* may be larger for smaller \mathcal{V} . To obtain a small space that is invariant under Fourier transform, starting with \mathcal{D} , we might add $\mathcal{F}[\mathcal{D}]$. We define

$$\mathcal{R} = \mathcal{D} + \mathcal{F}[\mathcal{D}].$$

Theorem 4.

space	invariant under differentiation?	invariant under Fourier transform?
\mathcal{D}	✓	✗
\mathcal{R}	✓	✓
\mathcal{G}	✗	✗
\mathcal{H}	✓	✗
\mathcal{I}	✓	✓
\mathcal{S}	✓	✓

Proof. (1) It is clear that \mathcal{D} is invariant under differentiation. We know from Theorem 3 that it is not invariant under Fourier transform.

(2) We will next show that $\mathcal{D} + \mathcal{F}[\mathcal{D}]$ is invariant under differentiation. Since \mathcal{D} is invariant under differentiation, it suffices to show that the derivative of a function in $\mathcal{F}[\mathcal{D}]$ belongs to $\mathcal{F}[\mathcal{D}]$. So let $\psi \in \mathcal{D}$ and $\varphi = \mathcal{F}[\psi] = \hat{\psi}$. Then

$$\varphi'(t) = \int_{-\infty}^{\infty} \psi(x) ix e^{ixt} dx,$$

which is the Fourier transform of $ix\psi(x) \in \mathcal{D}$. To show that $\mathcal{D} + \mathcal{F}[\mathcal{D}]$ is invariant under Fourier transform, note that the Fourier transform of a function in \mathcal{D} is in $\mathcal{F}[\mathcal{D}]$, and the Fourier transform of $\mathcal{F}[\mathcal{D}]$ is, by the inversion theorem, in \mathcal{D} .

(3) Clearly \mathcal{G} is not invariant under differentiation. It is not invariant under Fourier transform either. For instance,

$$\begin{aligned} \mathcal{F}\left[e^{-(x-1)^2}\right] &= \int_{-\infty}^{\infty} e^{-(x-1)^2} e^{ixt} dx = e^{it} \int_{-\infty}^{\infty} e^{-(x-1)^2} e^{i(x-1)t} dx = \\ &e^{it} \int_{-\infty}^{\infty} e^{-x^2} e^{ixt} dx = \int_{-\infty}^{\infty} e^{-(x-it/2)^2} dx e^{-t^2/4} e^{it} = \sqrt{\pi} e^{-t^2/4} e^{it} \notin \mathcal{G}. \end{aligned}$$

(Justification of the last equation involves contour integration.)

(4) \mathcal{H} is obviously invariant under differentiation, but it isn't invariant under Fourier transform either:

$$\mathcal{F}\left[e^{-(x-1)^2}\right] = \sqrt{\pi} e^{-t^2/4} e^{it} \notin \mathcal{H}.$$

(5) \mathcal{I} is obviously invariant under differentiation as well. To prove that it is also invariant under Fourier transform, we must show that the Fourier transform of

$$\varphi(x) = x^n e^{-(x-\mu)^2/(2\sigma^2)},$$

where $n \in \mathbb{N} \cup \{0\}$, $\mu \in \mathbb{C}$, and $\sigma > 0$, belongs to \mathcal{I} . We have

$$\hat{\varphi}(t) = \int_{-\infty}^{\infty} x^n e^{-(x-\mu)^2/(2\sigma^2)} e^{ixt} dx = (-i)^n \frac{d^n}{dt^n} \int_{-\infty}^{\infty} e^{-(x-\mu)^2/(2\sigma^2)} e^{ixt} dx.$$

Since \mathcal{I} is invariant under differentiation, it suffices now to prove that

$$\int_{-\infty}^{\infty} e^{-(x-\mu)^2/(2\sigma^2)} e^{ixt} dx \in \mathcal{I}.$$

We write this as

$$\int_{-\infty}^{\infty} e^{-\left(\frac{x^2}{2\sigma^2} - \frac{\mu x}{\sigma^2} - ixt + \frac{\mu^2}{2\sigma^2}\right)} dx \in \mathcal{I}.$$

Complete the square:

$$\begin{aligned} \frac{x^2}{2\sigma^2} - \frac{\mu x}{\sigma^2} - ixt + \frac{\mu^2}{2\sigma^2} &= \frac{1}{2\sigma^2} (x^2 - 2\mu x - 2\sigma^2 ixt + \mu^2) = \\ \frac{1}{2\sigma^2} \left[(x - (\mu + \sigma^2 it))^2 + \mu^2 - (\mu + \sigma^2 it)^2 \right] &= \frac{1}{2\sigma^2} \left[(x - (\mu + \sigma^2 it))^2 - 2\mu\sigma^2 it + \sigma^4 t^2 \right] = \\ \frac{(x - (\mu + \sigma^2 it))^2}{2\sigma^2} - \mu it + \frac{\sigma^2 t^2}{2}. \end{aligned}$$

So

$$\int_{-\infty}^{\infty} e^{-\left(\frac{x^2}{2\sigma^2} - \frac{\mu x}{\sigma^2} - ixt + \frac{\mu^2}{2\sigma^2}\right)} dx = e^{-\frac{\sigma^2 t^2}{2} + \mu it} \int_{-\infty}^{\infty} e^{-\frac{(x - (\mu + \sigma^2 it))^2}{2\sigma^2}} dx. \quad (3)$$

Using contour integration, and a change of variables, the integral is seen to equal $\sqrt{2\pi\sigma^2}$. Altogether, (3) becomes

$$\sqrt{2\pi\sigma^2} e^{-\frac{\sigma^2 t^2}{2} + \mu it} \in \mathcal{I}.$$

(6) \mathcal{S} is invariant under differentiation and Fourier transform; see the second part of my notes on the Fourier transform. \square

So differentiation and Fourier transforms can be defined on \mathcal{R}^* or on \mathcal{I}^* . The space $L^1_{\text{loc,poly}}$ can be thought of as a subspace of both \mathcal{R}^* and \mathcal{I}^* . More functions than those in $L^1_{\text{loc,poly}}$ can be thought of as elements of \mathcal{I}^* — for instance, the function e^x . Interestingly, \mathcal{R} and \mathcal{I} have no non-zero elements in common:

Theorem 5. $\mathcal{R} \cap \mathcal{I} = \{0\}$.

Proof. Suppose $\varphi \in \mathcal{I}$ can be written in the form

$$\varphi = \psi + \hat{\eta}$$

where $\psi \in \mathcal{D}$ and $\hat{\eta} \in \mathcal{D}$. All elements of \mathcal{I} are analytic functions. Also, $\hat{\eta}$ is analytic; see the proof of Theorem 3. Therefore

$$\psi = \varphi - \hat{\eta}$$

is analytic. Since ψ is zero outside a compact interval, $\psi = 0$. So

$$\varphi = \hat{\eta}.$$

By the inversion formula,

$$\hat{\varphi} = \hat{\eta} = 2\pi\eta(-x).$$

Since \mathcal{I} is invariant under Fourier transform, this implies $2\pi\eta(-x) \in \mathcal{I}$, so $\eta \in \mathcal{I}$. Therefore η is both analytic, and has compact support, therefore $\eta = 0$, and hence $\varphi = 0$. \square

7 Convolving linear functionals with test functions

Definition 5. Let \mathcal{V} be a subspace of \mathcal{S} . Assume

$$\forall \varphi \in \mathcal{V} \quad \forall x \in \mathbb{R} \quad \varphi(x - \cdot) \in \mathcal{V}. \quad (4)$$

Let $F \in \mathcal{V}^*$ and $\varphi \in \mathcal{V}$. The convolution $F * \varphi$ is the function

$$(F * \varphi)(x) = \langle F(y), \varphi(x - y) \rangle. \quad (5)$$

I wrote " $F(y)$ " in (5) to indicate that F is acting on $\varphi(x - y)$ thought of as a function of y , with x fixed.

The spaces \mathcal{D} , \mathcal{R} , \mathcal{I} , and \mathcal{S} all satisfy the condition (4).

8 The first place where continuity matters: smoothness of convolutions

Let's try to prove differentiability of $F * \varphi$. We have

$$\frac{\langle F(y), \varphi(x + h - y) \rangle - \langle F(y), \varphi(x - y) \rangle}{h} = \left\langle F(y), \frac{\varphi(x + h - y) - \varphi(x - y)}{h} \right\rangle.$$

The functions

$$\frac{\varphi(x + h - y) - \varphi(x - y)}{h}, \quad y \in \mathbb{R},$$

with x fixed, converge, as $h \rightarrow 0$, to $\varphi'(x - y)$. This is obviously valid pointwise, but it is valid also in a much stronger sense, to be discussed momentarily. To conclude that $F * \varphi$ is differentiable, we'd like to say now that

$$\lim_{h \rightarrow 0} \left\langle F(y), \frac{\varphi(x + h - y) - \varphi(x - y)}{h} \right\rangle = \left\langle F(y), \lim_{h \rightarrow 0} \frac{\varphi(x + h - y) - \varphi(x - y)}{h} \right\rangle = \langle F(y), \varphi'(x - y) \rangle.$$

For this to be valid, we need a continuity condition on F .

Definition 6. A sequence $\{\varphi_k\}_{k \in \mathbb{N}}$ of Schwartz functions converges to 0 in \mathcal{S} if

$$\forall \alpha \in \mathbb{N} \cup \{0\} \quad \forall \beta \in \mathbb{N} \cup \{0\} \quad \lim_{k \rightarrow \infty} \left\| x^\alpha \frac{d^\beta \varphi_k}{dx^\beta} \right\|_\infty = 0 \quad (6)$$

A sequence $\{\varphi_k\}_{k \in \mathbb{N}}$ of functions in \mathcal{S} converges to $\lambda \in \mathcal{S}$ if the sequence $\{\varphi_k - \lambda\}_{k \in \mathbb{N}}$ converges to zero in \mathcal{S} .

Lemma 1. As $h \rightarrow 0$, the functions

$$\frac{\varphi(x+h-y) - \varphi(x-y)}{h}$$

(understood as functions of y , with x fixed) converge to $\varphi'(x-y)$ in \mathcal{S} .

Proof. This is straightforward. As an example, I'll spell out the proof that (for a fixed x)

$$\lim_{h \rightarrow 0} \left\| y \frac{d}{dy} \left(\frac{\varphi(x+h-y) - \varphi(x-y)}{h} - \varphi'(x-y) \right) \right\|_\infty = 0.$$

Let $x \in \mathbb{R}$ and $y \in \mathbb{R}$. Let $|h| \leq 1$. Then

$$\begin{aligned} & \left| y \frac{d}{dy} \left(\frac{\varphi(x+h-y) - \varphi(x-y)}{h} - \varphi'(x-y) \right) \right| \\ &= |y| \left| \frac{\varphi'(x+h-y) - \varphi'(x-y)}{h} - \varphi''(x-y) \right| = \\ &= |y| |\varphi''(x+ch-y) - \varphi''(x-y)| \quad (\text{for some } c \in (0, 1)) \\ &= |y| \varphi'''(x+cdh-y) |h| \quad (\text{for some } d \in (0, 1)) \\ &\leq (|(x+cdh-y) \varphi'''(x+cdh-y)| + |(x+cdh) \varphi'''(x+cdh-y)|) |h| \\ &\leq (\|s \varphi'''(s)\|_\infty + (|x|+1) \|\varphi'''(s)\|_\infty) |h|. \end{aligned}$$

(In the last step, I used that $|h| \leq 1$. I used the letter s for the independent variable because x and y are taken.) So

$$\begin{aligned} & \left\| y \frac{d}{dy} \left(\frac{\varphi(x+h-y) - \varphi(x-y)}{h} - \varphi'(x-y) \right) \right\|_\infty \leq \\ & \quad (\|s \varphi'''(s)\|_\infty + (|x|+1) \|\varphi'''(s)\|_\infty) |h|. \end{aligned}$$

This tends to zero as $h \rightarrow 0$. □

Definition 7. Let $\mathcal{V} \subseteq \mathcal{S}$ be a subspace. A linear functional $F \in \mathcal{V}^*$ is called a distribution on \mathcal{V} if it is continuous in the sense that $\varphi_k \rightarrow 0$ in \mathcal{S} (in the sense of Definition 6) implies $F(\varphi_k) \rightarrow 0$. The space of all continuous linear functionals on \mathcal{V} is denoted by \mathcal{V}' .

The distributions on \mathcal{S} are called tempered distributions.

Definition 6 describes an extremely strong notion of convergence. Since the notion of convergence in \mathcal{S} is so strong, the notion of continuity is extremely weak. It is, however, sufficient for our purposes. We conclude from the preceding discussion:

Theorem 6. Let $\mathcal{V} \subseteq \mathcal{S}$ be a subspace that is invariant with respect to differentiation.

Assume

$$\forall \varphi \in \mathcal{V} \quad \forall x \in \mathbb{R} \quad \varphi(x - \cdot) \in \mathcal{V}.$$

Let $F \in \mathcal{V}'$ and $\varphi \in \mathcal{V}$. Then

$$\frac{d}{dx}(F * \varphi)(x) = (F * \varphi')(x),$$

and consequently more generally

$$\frac{d^k}{dx^k}(F * \varphi)(x) = F * \frac{d^k \varphi}{dx^k}(x)$$

for all $k \geq 0$. In particular, $F * \varphi \in C^\infty$.

9 A discontinuous linear functional on the Schwartz space

Here is a fairly artificial and non-explicit construction of a linear functional on \mathcal{S} that is not continuous. Let $(b_i)_{i \in I}$ be a Hamel basis of \mathcal{S} . Let $\varphi_1, \varphi_2, \dots \in \mathcal{S}$ with $\varphi_k = b_{i_k}$, $i_k \in I$, and the i_k are different from each other. By scaling the φ_k , we can assume without loss of generality that

$$\forall \alpha \in \{0, 1, \dots, k\} \quad \forall \beta \in \{0, 1, \dots, k\} \quad \left\| x^\alpha \frac{d^\beta \varphi_k}{dx^\beta} \right\|_\infty \leq \frac{1}{k}.$$

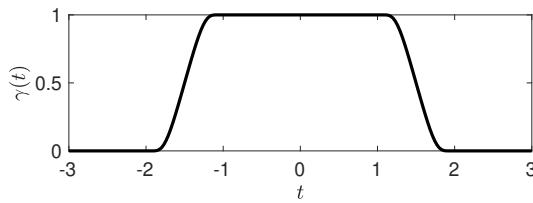
Then clearly $\varphi_k \rightarrow 0$ in \mathcal{S} . Now define a linear functional F on \mathcal{S} by $F(\varphi_k) = 1$, and $F(b_i) = 0$ if b_i is none of the φ_k . Clearly, F is not continuous.

10 Tempered distributions are limits of functions in C_c^∞

Theorem 7. For any $F \in \mathcal{S}'$, there exists a sequences η_1, η_2, \dots in C_c^∞ with

$$\forall \varphi \in \mathcal{S} \quad \langle F, \varphi \rangle = \lim_{k \rightarrow \infty} \int_{-\infty}^{\infty} \eta_k(x) \varphi(x) dx. \quad (7)$$

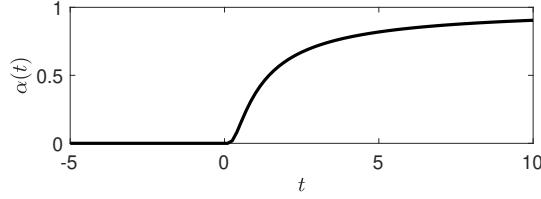
Sketch of proof. Make F smooth by convolving with $\frac{1}{\varepsilon} \psi\left(\frac{x}{\varepsilon}\right)$ for a small $\varepsilon > 0$, where $\psi \in \mathcal{S}$ with $\int_{-\infty}^{\infty} \psi(x) dx = 1$. Then make the support compact by multiplying by $\gamma(x/R)$ for a large R , where $\gamma(x) = 1$ for $|x| \leq 1$, $\gamma(x) = 0$ for $|x| \geq 2$, and γ is monotonic in $[-2, -1]$ and in $[1, 2]$.



□

Here is a way of constructing γ . We start with

$$\alpha(t) = \begin{cases} 0 & \text{if } t \geq 0, \\ e^{-1/t} & \text{if } t > 0. \end{cases}$$



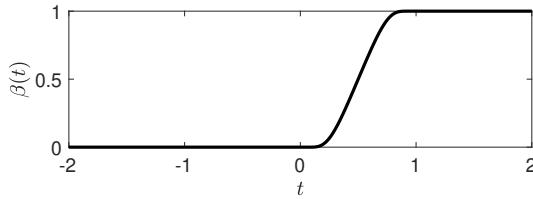
then define

$$\beta(t) = \frac{\alpha(t)}{\alpha(t) + \alpha(1-t)}.$$

Then $\beta(t) = 0$ for $t \leq 0$, $\beta(t) = 1$ for $t \geq 1$, and β is increasing, since for $t > 0$ we can write

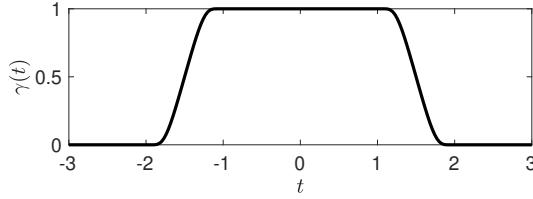
$$\beta(t) = \frac{1}{1 + \alpha(1-t)/\alpha(t)}.$$

($\alpha(1-t)$ decreases, $\alpha(t)$ increases, so $\alpha(1-t)/\alpha(t)$ decreases, and β increases.)



Then define

$$\gamma(t) = \beta(t+2)\beta(-t+2).$$



It is clear that the convergence in (7) cannot be uniform in φ . For instance, think of $F = 1$. That's a tempered distribution, and convolving with $\frac{1}{\varepsilon}\psi\left(\frac{x}{\varepsilon}\right)$ doesn't change it at all. So a function in \mathcal{D} that approximates F , in this case, is simply the function $\gamma(x/R)$ for large R . That doesn't approximate $\langle F, \varphi \rangle$ for *all* φ , but it does approximate it well if $\varphi(x)$ is very close to zero for $|x| \geq R$.

11 The Fourier transform of x^2

The function x^2 is a tempered distribution, which we'll denote by F . Being a tempered distribution, it has a Fourier transform. And the strangest thing is, that Fourier transform can approximately be thought of as a smooth, compactly supported function.

Why is that, in this example?

$$\langle \hat{F}(t), \varphi(t) \rangle = \langle F(x), \hat{\varphi}(x) \rangle = \int_{-\infty}^{\infty} x^2 \hat{\varphi}(x) dx.$$

Now

$$x^2 \hat{\varphi}(x) = x^2 \int_{-\infty}^{\infty} \varphi(t) e^{itx} dt = - \int_{-\infty}^{\infty} \varphi(t) \frac{d^2}{dt^2} e^{itx} dt = - \int_{-\infty}^{\infty} \varphi''(t) e^{itx} dt.$$

So we can also write

$$\langle \hat{F}(t), \varphi(t) \rangle = - \int_{-\infty}^{\infty} \widehat{\varphi''}(x) dx.$$

This, by the inversion formula, is

$$-2\pi\varphi''(0).$$

Here is the result, in summary. The tempered distribution

$$\varphi \mapsto \int_{-\infty}^{\infty} x^2 \varphi(x) dx$$

has the Fourier transform

$$\varphi \mapsto -2\pi\varphi''(0).$$

To approximate this by a smooth function, we convolve it with

$$\psi_{\varepsilon}(x) = \frac{e^{-(x/\varepsilon)^2}}{\varepsilon\sqrt{\pi}}$$

for a small $\varepsilon > 0$. We obtain

$$\langle \hat{F}(s), \psi_\varepsilon(t-s) \rangle = -2\pi \psi_\varepsilon''(t) = \frac{4\sqrt{\pi}}{\varepsilon^3} \left(1 - \frac{2}{\varepsilon^2} t^2\right) e^{-(t/\varepsilon)^2}.$$

In summary:

The Fourier transform of the function x^2 , mollified by convolving with

$$\psi_\varepsilon(x) = \frac{e^{-(x/\varepsilon)^2}}{\varepsilon\sqrt{\pi}},$$

$\varepsilon > 0$, *equals*

$$\frac{4\sqrt{\pi}}{\varepsilon^3} \left(1 - \frac{2}{\varepsilon^2} t^2\right) e^{-t^2/\varepsilon^2}.$$

