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1 Purpose of these notes

This is not a comprehensive introduction to tempered distributions, but just a brief review of
what tempered distributions are. I have added some intuition and motivation that had not
previously been entirely clear to me.
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All functions in these notes are assumed to be defined on R, with values in C. We
write:

D =C∞c and S = Schwartz space.

A distribution is a continuous linear functional on D. The motivation is as follows. A
locally integrable function f = f (x) can be identified with the linear functional

Ff ∶ D → C, (1)

ϕ ↦
ˆ
∞

−∞

f (x) ϕ(x) dx. (2)

Knowing Ff , we can back out f . I’ll very briefly review why this is so shorty. But there are
also linear functionals on D that don’t come from functions. The most famous example is

ϕ↦ ϕ(0).

Another interesting example is

ϕ↦ lim
r→∞

ˆ r

−r

ϕ(x)
x

dx.

Distributions offer a way of viewing these examples as generalized functions.

If D is replaced by S , one obtains the notion of tempered distributions. Then local inte-
grability is no longer sufficient to guarantee the existence of the integrals

´
∞

−∞
f (x)ϕ(x) dx.

One has to assume also that f (x) does not grow too fast as x→±∞. I will discuss this, and
I will discuss the reason why one might want to replace D by S , and whether one might be
able to make choices other than D or S .

The notion of continuity of linear functionals that is used here is extremely weak, so
weak that it is hard to find examples of linear functionals that are not continuous. Why this
continuity requirement is needed at all will be discussed later in these notes; initially, it isn’t
needed.

2 Locally integrable functions as linear functionals on D

Definition 1. A measurable function f ∶ R→C is called locally integrable if for all real
a and b with a < b, f ⋅1

[a,b] ∈ L1. The vector space of all locally integrable functions is
denoted by L1

loc.
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Theorem 1. If ψ ∈ D has integral 1, and if ψε(x) = 1
ε
ψ( x

ε
) for ε > 0, then

∀ f ∈ L1
loc f (x) = lim

ε→0+

ˆ
∞

−∞

f (y)ψε(x−y) dy for almost all x.

This is a well-known fact of analysis. It follows from the Lebesgue differentiation theorem:

Lebesgue differentiation theorem. Let f ∈ L1
loc. Then

f (x) = lim
ε→0+

1
2ε

ˆ x+ε

x−ε

f (y) dy for almost all x.

Theorem 1 implies that the linear functional Ff (see eqs. (1), (2)) determines the function
f almost everywhere. (Of course, “almost everywhere" is the best one can expect. After all,
f is only defined almost everywhere.)

3 Locally integrable, polynomially growing functions as lin-
ear functionals on S

Definition 2. A function f ∈ L1
loc is called polynomially growing if there exists an n ∈N

and a constant C > 0 so that

limsup
∣x∣→∞

∣ f (x)∣ ≤C∣x∣n.

The space of all such functions is denoted by L1
loc,poly.

Theorem 2. If ψ ∈ S has integral 1, and if ψε(x) = 1
ε
ψ( x

ε
) for ε > 0, then

∀ f ∈ L1
loc,poly f (x) = lim

ε→0+

ˆ
∞

−∞

f (y)ψε(x−y) dy for almost all x.

This, too, follows from the Lebesgue differentiation theorem: It implies that the linear
functional

Ff ∶ S → C.

ϕ ↦
ˆ
∞

−∞

f (x) ϕ(x) dx

determines the function f almost everywhere. The assumption of (at most) polynomial
growth is needed to ensure that the integrals

´
∞

−∞
f (x)ϕ(x) dx, ϕ ∈ S , exist.
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4 How about domains other than D and S?

One could consider other spaces on which to study linear functionals. I will think a bit about
possible subspaces V ⊆ S other than D and S . The functions in V are called test functions
in this context.

Notation:

V∗ = space of linear functionals V →C (without any continuity condition)

In light of Theorem 2, one might consider taking V to be the much smaller space

G = span{e−(x−µ)2/(2σ
2
) ∶ µ ∈R, σ > 0}

for instance. The space L1
loc,poly is embedded in G∗, in the sense that the functional

ϕ↦
ˆ
∞

−∞

f (x)ϕ(x) dx

determines the function f almost everywhere if f ∈L1
loc,poly. Actually, f could even be some-

thing like ex here, which grows faster than polynomially as x→∞. Reducing the domain, V ,
of the linear functionals can broaden the space of functions that can be viewed as embedded
in V∗.

5 Derivatives of linear functionals

Definition 3. Let V ⊆ S be a subspace that is invariant under differentiation:

∀ϕ ∈ V ϕ
′ ∈ V.

Let F ∈ V∗. The derivative of F is the linear functional F ′ ∈ V∗ defined by

⟨F ′,ϕ⟩ = −⟨F,ϕ′⟩ .

This is motivated by integration by parts.

Evidently D and S are invariant under differentiation, whereas G is not. Derivatives
of linear functionals on G are not well-defined. However, the following larger spaces are
invariant under differentiation:

H = span{xne−(x−µ)2/(2σ
2
) ∶ n ∈N∪{0}, µ ∈R, σ > 0} ,

and
I = span{xne−(x−µ)2/(2σ

2
) ∶ n ∈N∪{0}, µ ∈C, σ > 0} .

Linear functionals in D∗, S∗, H∗, I∗ can be differentiated infinitely often.
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6 Fourier transforms of linear functionals

Definition 4. Let V ⊆ S be a subspace that is invariant under Fourier transform:

∀ϕ ∈ V ϕ̂ ∈ V.

Let F ∈ V∗. The Fourier transform of F is the linear functional F̂ ∈ V∗ defined by

⟨F̂ ,ϕ⟩ = ⟨F, ϕ̂⟩ .

This is motivated by the symmetry property of the Fourier transform on L1.

Theorem 3. D =C∞c is not invariant under Fourier transform. Much more strongly:

ϕ ∈ D−{0} ⇒ ϕ̂ /∈ D.

This is the reason why D is not a good domain for distributions when one wants to work with
Fourier transforms.

Proof. Let ϕ ∈ D. Then

ϕ̂(t) =
ˆ
∞

−∞

ϕ(x)(
∞

∑
k=0

(ixt)k
k!
) dx =

ˆ
∞

−∞

∞

∑
k=0

ϕ(x)(ix)
k

k!
tk dx.

The integral and sum can be swapped; this follows for instance from Fubini’s theorem. So
we obtain

ϕ̂(t) =
∞

∑
k=0
(
ˆ
∞

−∞

ϕ(x)(ix)
k

k!
dx)tk.

This shows that ϕ̂ is analytic. It therefore cannot vanish on an interval unless it vanishes
everywhere.

It is advantageous to keep the domain of the linear functionals small. For instance, I
noted earlier that the space of functions that can be thought of as elements of V∗ may
be larger for smaller V . To obtain a small space that is invariant under Fourier transform,
starting with D, we might add F [D]. We define

R=D+F [D] .
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Theorem 4.

space invariant under differentiation? invariant under Fourier transform?
D ✓ X
R ✓ ✓
G X X
H ✓ X
I ✓ ✓
S ✓ ✓

Proof. (1) It is clear that D is invariant under differentiation. We know from Theorem 3 that
is is not invariant under Fourier transform.

(2) We will next show that D+F [D] is invariant under differentiation. Since D is invariant
under differentiation, it suffices to show that the derivative of a function in F [D] belongs to
F [D]. So let ψ ∈ D and ϕ = F [ψ] = ψ̂. Then

ϕ
′(t) =

ˆ
∞

−∞

ψ(x) ix eixt dx,

which is the Fourier transform of ixψ(x) ∈ D. To show that D+F [D] is invariant under
Fourier transform, note that the Fourier transform of a function in D is in F [D], and the
Fourier transform of F [D] is, by the inversion theorem, in D.

(3) Clearly G is not invariant under differentiation. It is not invariant under Fourier transform
either. For instance,

F [e−(x−1)2] =
ˆ
∞

−∞

e−(x−1)2eixt dx = eit
ˆ
∞

−∞

e−(x−1)2ei(x−1)t dx =

eit
ˆ
∞

−∞

e−x2
eixt dx =

ˆ
∞

−∞

e−(x−it/2)2 dx e−t2
/4 eit =

√
π e−t2

/4 eit /∈ G.

(Justification of the last equation involves contour integration.)

(4)H is obviously invariant under differentiation, but it isn’t invariant under Fourier transform
either:

F [e−(x−1)2] =
√

π e−t2
/4 eit /∈ H.

(5) I is obviously invariant under differentiation as well. To prove that it is also invariant
under Fourier transform, we must show that the Fourier transform of

ϕ(x) = xne−(x−µ)2/(2σ
2
),

where n ∈N∪{0}, µ ∈C, and σ > 0, belongs to I . We have

ϕ̂(t) =
ˆ
∞

−∞

xne−(x−µ)2/(2σ
2
) eixt dx = (−i)n dn

dtn

ˆ
∞

−∞

e−(x−µ)2/(2σ
2
) eixt dx.
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Since I is invariant under differentiation, it suffices now to prove that
ˆ
∞

−∞

e−(x−µ)2/(2σ
2
) eixt dx ∈ I.

We write this as ˆ
∞

−∞

e
−(

x2

2σ2 −
µx
σ2 −ixt+ µ2

2σ2 ) dx ∈ I.

Complete the square:

x2

2σ2 −
µx
σ2 − ixt + µ2

2σ2 =
1

2σ2 (x
2−2µx−2σ

2ixt +µ2) =

1
2σ2 [(x−(µ+σ

2it))2+µ2−(µ+σ
2it)2] = 1

2σ2 [(x−(µ+σ
2it))2−2µσ

2it +σ
4t2] =

(x−(µ+σ2it))2

2σ2 −µit + σ2t2

2
.

So ˆ
∞

−∞

e
−(

x2

2σ2 −
xµ
σ2 −ixt+ µ2

2σ2 ) dx = e−
σ

2t2
2 +µit

ˆ
∞

−∞

e−
(x−(µ+σ

2it))2

2σ2 dx. (3)

Using contour integration, and a change of variables, the integral is seen to equal
√

2πσ2.
Altogether, (3) becomes √

2πσ2 e−
σ

2t2
2 +µit ∈ I.

(6) S is invariant under differentiation and Fourier transform; see the second part of my
notes on the Fourier transform.

So differentiation and Fourier transforms can be defined on R∗ or on I∗. The space
L1

loc,poly can be thought of as a subspace of both R∗ and I∗. More functions than those in

L1
loc,poly can be thought of as elements of I∗ — for instance, the function ex. Interestingly,
R and I have no non-zero elements in common:

Theorem 5. R∩I = {0}.

Proof. Suppose ϕ ∈ I can be written in the form

ϕ =ψ+ η̂

where ψ ∈ D and η ∈ D. All elements of I are analytic functions. Also, η̂ is analytic; see the
proof of Theorem 3. Therefore

ψ = ϕ− η̂
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is analytic. Since ψ is zero outside a compact interval, ψ = 0. So

ϕ = η̂.

By the inversion formula,
ϕ̂ = ˆ̂η = 2πη(−x).

Since I is invariant under Fourier transform, this implies 2πη(−x) ∈ I , so η ∈ I . Therefore
η is both analytic, and has compact support, therefore η = 0, and hence ϕ = 0.

7 Convolving linear functionals with test functions

Definition 5. Let V be a subspace of S . Assume

∀ϕ ∈ V ∀x ∈R ϕ(x− ⋅) ∈ V. (4)

Let F ∈ V∗ and ϕ ∈ V . The convolution F ∗ϕ is the function

(F ∗ϕ)(x) = ⟨F(y),ϕ(x−y)⟩ . (5)

I wrote “F(y)" in (5) to indicate that F is acting on ϕ(x−y) thought of as a function of
y, with x fixed.

The spaces D, R, I , and S all satisfy the condition (4).

8 The first place where continuity matters: smoothness of
convolutions

Let’s try to prove differentiability of F ∗ϕ. We have

⟨F(y),ϕ(x+h−y)⟩−⟨F(y),ϕ(x−y)⟩
h

= ⟨F(y), ϕ(x+h−y)−ϕ(x−y)
h

⟩ .

The functions
ϕ(x+h−y)−ϕ(x−y)

h
, y ∈R,

with x fixed, converge, as h → 0, to ϕ′(x− y). This is obviously valid pointwise, but it is
valid also in a much stronger sense, to be discussed momentarily. To conclude that F ∗ϕ is
differentiable, we’d like to say now that

lim
h→0
⟨F(y), ϕ(x+h−y)−ϕ(x−y)

h
⟩ = ⟨F(y), lim

h→0

ϕ(x+h−y)−ϕ(x−y)
h

⟩ = ⟨F(y),ϕ′(x−y)⟩ .

For this to be valid, we need a continuity condition on F .
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Definition 6. A sequence {ϕk}k∈N of Schwartz functions converges to 0 in S if

∀α ∈N∪{0} ∀β ∈N∪{0} lim
k→∞
∥xα

dβϕk

dxβ
∥
∞

= 0 (6)

A sequence {ϕk}k∈N of functions in S converges to λ ∈ S if the sequence {ϕk −λ}k∈N
converges to zero in S .

Lemma 1. As h→ 0, the functions

ϕ(x+h−y)−ϕ(x−y)
h

(understood as functions of y, with x fixed) converge to ϕ′(x−y) in S .

Proof. This is straightforward. As an example, I’ll spell out the proof that (for a fixed x)

lim
h→0
∥y d

dy
(ϕ(x+h−y)−ϕ(x−y)

h
−ϕ
′(x−y))∥

∞

= 0.

Let x ∈R and y ∈R. Let ∣h∣ ≤ 1. Then

∣y d
dy
(ϕ(x+h−y)−ϕ(x−y)

h
−ϕ
′(x−y))∣

= ∣y∣ ∣ϕ
′(x+h−y)−ϕ′(x−y)

h
−ϕ
′′(x−y)∣ =

= ∣y∣ ∣ϕ′′(x+ch−y)−ϕ
′′(x−y)∣ (for some c ∈ (0,1))

= ∣y ϕ
′′′(x+cdh−y)∣ ∣h∣ (for some d ∈ (0,1))

≤ (∣(x+cdh−y) ϕ
′′′(x+cdh−y)∣+ ∣(x+cdh) ϕ

′′′(x+cdh−y)∣) ∣h∣
≤ (∥s ϕ

′′′(s)∥
∞
+(∣x∣ +1)∥ϕ′′′(s)∥

∞
) ∣h∣.

(In the last step, I used that ∣h∣ ≤ 1. I used the letter s for the independent variable because
x and y are taken.) So

∥y d
dy
(ϕ(x+h−y)−ϕ(x−y)

h
−ϕ
′(x−y))∥

∞

≤

(∥s ϕ
′′′(s)∥

∞
+(∣x∣ +1)∥ϕ′′′(s)∥

∞
) ∣h∣.

This tends to zero as h→ 0.
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Definition 7. Let V ⊆S be a subspace. A linear functional F ∈ V∗ is called a distribution
on V if it is continuous in the sense that ϕk→ 0 in S (in the sense of Definition 6) implies
F(ϕk) → 0. The space of all continuous linear functionals on V is denoted by V ′.

The distributions on S are called tempered distributions.

Definition 6 describes an extremely strong notion of convergence. Since the notion of
convergence in S is so strong, the notion of continuity is extremely weak. It is, however,
sufficient for our purposes. We conclude from the preceding discussion:

Theorem 6. Let V ⊆ S be a subspace that is invariant with respect to differentiation.
Assume

∀ϕ ∈ V ∀x ∈R ϕ(x− ⋅) ∈ V.
Let F ∈ V ′ and ϕ ∈ V . Then

d
dx
(F ∗ϕ)(x) = (F ∗ϕ

′)(x),

and consequently more generally

dk

dxk (F ∗ϕ)(x) = F ∗ dkϕ

dxk (x)

for all k ≥ 0. In particular, F ∗ϕ ∈C∞.

9 A discontinuous linear functional on the Schwartz space

Here is a fairly artificial and non-explicit construction of a linear functional on S that is not
continuous. Let (bi)i∈I be a Hamel basis of S . Let ϕ1,ϕ2, . . . ∈ S with ϕk = bik , ik ∈ I, and the
ik are different from each other. By scaling the ϕk, we can assume without loss of generality
that

∀α ∈ {0,1, . . . ,k} ∀β ∈ {0,1, . . . ,k} ∥xα
dβϕk

dxβ
∥
∞

≤ 1
k
.

Then clearly ϕk→ 0 in S . Now define a linear functional F on S by F(ϕk) = 1, and F(bi) = 0
if bi if none of the ϕk. Clearly, F is not continuous.
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10 Tempered distributions are limits of functions in C∞c

Theorem 7. For any F ∈ S ′, there exists a sequences η1,η2, . . . in C∞c with

∀ϕ ∈ S ⟨F,ϕ⟩ = lim
k→∞

ˆ
∞

−∞

ηk(x)ϕ(x) dx. (7)

Sketch of proof. Make F smooth by convolving with 1
ε
ψ( x

ε
) for a small ε > 0, where ψ ∈ S

with
´
∞

−∞
ψ(x) dx = 1. Then make the support compact by multiplying by γ(x/R) for a large

R, where γ(x) = 1 for ∣x∣ ≤ 1 γ(x) = 0 for ∣x∣ ≥ 2, and γ is monotonic in [−2,−1] and in [1,2].

-3 -2 -1 0 1 2 3
0

0.5

1

2

Here is a way of constructing γ. We start with

α(t) = { 0 if t ≥ 0,
e−1/t if t > 0.

-5 0 5 10
0

0.5

1

then define

β(t) = α(t)
α(t)+α(1− t) .

Then β(t) = 0 for t ≤ 0, β(t) = 1 for t ≥ 1, and β is increasing, since for t > 0 we can write

β(t) = 1
1+α(1− t)/α(t) .

(α(1− t) decreases, α(t) increases, so α(1− t)/α(t) decreases, and β increases.)

-2 -1 0 1 2
0

0.5

1
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Then define
γ(t) = β(t +2)β(−t +2).

-3 -2 -1 0 1 2 3
0

0.5

1

It is clear that the convergence in (7) cannot be uniform in ϕ. For instance, think of
F = 1. That’s a tempered distribution, and convolving with 1

ε
ψ( x

ε
) doesn’t change it at all.

So a function in D that approximates F , in this case, is simply the function γ(x/R) for large
R. That doesn’t approximate ⟨F,ϕ⟩ for all ϕ, but it does approximate it well if ϕ(x) is very
close to zero for ∣x∣ ≥ R.

11 The Fourier transform of x2

The function x2 is a tempered distribution, which we’ll denote by F . Being a tempered
distribution, it has a Fourier transform. And the strangest thing is, that Fourier transform can
approximately be thought of as a smooth, compactly supported function.

Why is that, in this example?

⟨F̂(t),ϕ(t)⟩ = ⟨F(x), ϕ̂(x)⟩ =
ˆ
∞

−∞

x2
ϕ̂(x) dx.

Now

x2
ϕ̂(x) = x2

ˆ
∞

−∞

ϕ(t)eitx dt = −
ˆ
∞

−∞

ϕ(t) d2

dt2 eitx dt = −
ˆ
∞

−∞

ϕ
′′(t)eitx dt.

So we can also write

⟨F̂(t),ϕ(t)⟩ = −
ˆ
∞

−∞

ϕ̂′′(x) dx.

This, by the inversion formula, is
−2πϕ

′′(0).
Here is the result, in summary. The tempered distribution

ϕ↦
ˆ
∞

−∞

x2
ϕ(x) dx

has the Fourier transform
ϕ↦−2πϕ

′′(0).

To approximate this by a smooth function, we convolve it with

ψε(x) =
e−(x/ε)

2

ε
√

π
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for a small ε > 0. We obtain

⟨F̂(s),ψε(t − s)⟩ = −2πψ
′′

ε (t) =
4
√

π

ε3 (1−
2
ε2 t2) e−(t/ε)

2
.

In summary:

The Fourier transform of the function x2, mollified by convolving with

ψε(x) =
e−(x/ε)

2

ε
√

π
,

ε > 0, equals
4
√

π

ε3 (1−
2
ε2 t2)e−t2

/ε
2
.
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