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1 A simple fact about Fourier transforms and complex conjugates

The following fact is completely straightforward from the definition of F , but I find it worth
recording since it will be used several times.

Lemma 1. Let f ∈ L1. Then
F[ f ](t) = F[ f ](−t).

The Fourier transform of the complex conjugate is the complex conjugate of the Fourier
transform, but evaluated at −t, not at t.
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2 The Fourier transform on S preserves L2-products up to 2π

Theorem 1. Let f ∈ S and g ∈ S . Then
ˆ
∞

−∞

f̂ (t) ĝ(t) dt = 2π

ˆ
∞

−∞

f (x) g(x) dx.

Proof. ˆ
∞

−∞

f̂ (t) ĝ(t) dt =
ˆ
∞

−∞

F[ f ](t)F[g](−t) dt.

By symmetry, this is ˆ
∞

−∞

f (x) F [F [g](−t)](x) dx.

By Lemma 1, this is ˆ
∞

−∞

f (x) F [F [g]](x) dx.

Again by Lemma 1, this is ˆ
∞

−∞

f (x) F [F [g]](−x) dx.

This is, by the inversion formula,

2π

ˆ
∞

−∞

f (x)g(x) dx.

Corollary 1. The operator 1
√

2π
F preserves the L2-norm on S .
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3 The Fourier transform on L2

Definition 1. Let f ∈ L2. Let fk, k = 1,2, . . ., be Schwartz functions with

l.i.m.
k→∞

fk = f ,

where l.i.m. stands for convergence in L2. The Fourier transform of f is defined by

f̂ = F[ f ] = l.i.m.
k→∞

f̂k.

One must explain why this definition makes sense:

Theorem 2. Let f ∈ L2. Let fk, k = 1,2, . . ., be Schwartz functions with

l.i.m.
k→∞

fk = f .

(a) The sequence f̂k in S converges in L2.

(b) Let also f̃k, k = 1,2, . . ., be Schwartz functions with

l.i.m.
k→∞

f̃k = f .

Then the L2-limits of the f̂k and the ˆ̃fk are the same.

Proof. This immediately follows from the fact that 1
√

2π
F preserves the L2-norm on S .

4 The Fourier transform on L2 preserves L2-products up to 2π

Theorem 3. If f and g are L2-functions, then
ˆ
∞

−∞

f̂ (t)ĝ(t) dt = 2π

ˆ
∞

−∞

f (x)g(x) dx.

Proof. Let { fk}k=1,2,... and {gk}k=1,2,... be sequences in S with

l.i.m.
k→∞

fk = f , l.i.m.
k→∞

gk = g.

Then, denoting the L2-inner product by ⟨⋅, ⋅⟩,ˆ
∞

−∞

f̂ (t)ĝ(t) dt = ⟨ f̂ , ĝ⟩ = lim
k→∞
⟨ f̂k, ĝk⟩ = 2π lim

k→∞
⟨ fk,gk⟩ = 2π⟨ f ,g⟩ =

2π

ˆ
∞

−∞

f (x)g(x) dx.
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Corollary 2. If f ∈ L2, then
∥ f̂ ∥2 =

√
2π ∥ f ∥2.

Corollary 3. Let f and fk, k = 1,2, . . ., be L2-functions. Assume that

l.i.m.
k→∞

fk = f ,

where l.i.m. stands for the L2-limit. Then

l.i.m.
k→∞

f̂k = f̂ .

5 On L1∩L2, the two definitions coincide

Theorem 4. Let f ∈ L1∩L2. Then f̂ = F[ f ] in the sense of Definition 1 is the same as

ˆ
∞

−∞

f (x)eitx dx.

Proof. There are functions ϕk ∈ S , k = 1,2, . . ., which converge to f in both L1 and L2.
(Construct ϕk by convolving f ⋅ 1

[−k,k] with kψ(kx), where ψ ∈ C∞c is non-negative with
integral 1, for instance.) Then

F[ f ] = lim
k→∞
F[ϕk]

by Definition 1, where on the right-hand side, F is to be understood in the L1-sense, so

F[ϕk] =

ˆ
∞

−∞

ϕk(x)eixt dx.

But also

lim
k→∞
F[ϕk] = lim

k→∞

ˆ
∞

−∞

ϕk(x) eixt dx =
ˆ
∞

−∞

f (x) eixt dx

because the ϕk converge to f in L1.

Combining Corollary 3 with Theorem 4, we find the following corollary.

Corollary 4. Let f ∈ L2. Then

f̂ = l.i.m.
k→∞

ˆ k

−k
f (x) eixt dx.
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6 The inversion theorem

Theorem 5. Let f ∈ L2. Then

f = l.i.m.
r→∞

1
√

2π

ˆ r

−r
f̂ (t) e−itx dt =

1
√

2π

ˆ̂f (−x).

Proof. Let fk ∈ S with l.i.m.
k→∞

fk = f . Then l.i.m.
k→∞

ˆ̂fk(−x) = ˆ̂f (−x) by Corollary 3. Therefore

f = l.i.m. fk(x) = l.i.m.
k→∞

1
√

2π
l.i.m. ˆ̂fk(−x) =

1
√

2π

ˆ̂f (−x).

7 The Fourier transform as an automorphism of L2

Theorem 6. F ∶ L2→ L2 is a bijection.

Proof. Since ∥ f̂ ∥2 =
√

2π ∥ f ∥2, f̂ = 0 implies f = 0. This means that F is injective. To show
that it is surjective, let f ∈ L2. Then for almost all x,

f (x) =
1
√

2π

ˆ̂f (−x) =
1
√

2π
F[ f̂ (−t)](x),

so

f = F [
f̂ (−t)
√

2π
] .

This shows that f is the Fourier transform of an L2-function.

8 Symmetry

Theorem 7. For all f ,g ∈ L2,
ˆ
∞

−∞

f (r)ĝ(r) dr =
ˆ
∞

−∞

f̂ (s)g(s) ds. (1)

Notice that f ∈ L2 and ĝ ∈ L2 imply f ĝ ∈ L1 by the Cauchy-Schwarz inequality, and sim-
ilarly f̂ g ∈ L1. This does not mean that F is Hermitian — it is not. There are no complex
conjugates in (1).
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Proof. Let ϕk and ψk, k ∈N, be Schwartz functions that converge in L2 to f and g, respec-
tively. Then

∣

ˆ
∞

−∞

f (r)ĝ(r) dr−
ˆ
∞

−∞

fk(r)ĝk(r) dr∣ =

∣

ˆ
∞

−∞

f (r)ĝ(r) dr−
ˆ
∞

−∞

fk(r)ĝ(r) dr+
ˆ
∞

−∞

fk(r)ĝ(r) dr−
ˆ
∞

−∞

fk(r)ĝk(r) dr∣ ≤

∥ f − fk∥2∥ĝ∥2+∥ fk∥2∥ĝ− ĝk∥2 (2)

by the Cauchy-Schwarz inequality. The expression in (2) converges to 0 as k→∞. There-
fore ˆ

∞

−∞

f (r)ĝ(r) dr = lim
k→∞

ˆ
∞

−∞

fk(r)ĝk(r) dr = lim
k→∞

ˆ
∞

−∞

f̂k(s)gk(s) ds.

This limit equals ˆ
∞

−∞

f̂ (s)g(s) ds

for the same reason for which
ˆ
∞

−∞

f (r)ĝ(r) dr = lim
k→∞

ˆ
∞

−∞

fk(r)ĝk(r) dr.
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