

Fourier transforms, part 3: Fourier transforms of square integrable functions

Christoph Börgers
Department of Mathematics, Tufts University
January 2026

Intended readers: At roughly the level of a first-year graduate student of mathematics.

Specific prerequisites include parts 1 and 2 of my notes on Fourier transforms

Feedback: If you find this useful, or if you have comments or suggestions, or if you just want to say hello, I would very much enjoy hearing from you: cborgers@tufts.edu.

Contents

1	A simple fact about Fourier transforms and complex conjugates	1
2	The Fourier transform on \mathcal{S} preserves L^2 -products up to 2π	2
3	The Fourier transform on L^2	3
4	The Fourier transform on L^2 preserves L^2 -products up to 2π	3
5	On $L^1 \cap L^2$, the two definitions coincide	4
6	The inversion theorem	5
7	The Fourier transform as an automorphism of L^2	5
8	Symmetry	5

1 A simple fact about Fourier transforms and complex conjugates

The following fact is completely straightforward from the definition of \mathcal{F} , but I find it worth recording since it will be used several times.

Lemma 1. *Let $f \in L^1$. Then*

$$\mathcal{F}[\bar{f}](t) = \overline{\mathcal{F}[f]}(-t).$$

The Fourier transform of the complex conjugate is the complex conjugate of the Fourier transform, but evaluated at $-t$, not at t .

2 The Fourier transform on \mathcal{S} preserves L^2 -products up to 2π

Theorem 1. *Let $f \in \mathcal{S}$ and $g \in \mathcal{S}$. Then*

$$\int_{-\infty}^{\infty} \hat{f}(t) \overline{\hat{g}(t)} dt = 2\pi \int_{-\infty}^{\infty} f(x) \overline{g(x)} dx.$$

Proof.

$$\int_{-\infty}^{\infty} \hat{f}(t) \overline{\hat{g}(t)} dt = \int_{-\infty}^{\infty} \mathcal{F}[f](t) \mathcal{F}[\bar{g}](-t) dt.$$

By symmetry, this is

$$\int_{-\infty}^{\infty} f(x) \mathcal{F}[\mathcal{F}[\bar{g}](-t)](x) dx.$$

By Lemma 1, this is

$$\int_{-\infty}^{\infty} f(x) \mathcal{F}[\overline{\mathcal{F}[\bar{g}]}](x) dx.$$

Again by Lemma 1, this is

$$\int_{-\infty}^{\infty} f(x) \overline{\mathcal{F}[\mathcal{F}[g]]}(-x) dx.$$

This is, by the inversion formula,

$$2\pi \int_{-\infty}^{\infty} f(x) \overline{g(x)} dx.$$

□

Corollary 1. *The operator $\frac{1}{\sqrt{2\pi}} \mathcal{F}$ preserves the L^2 -norm on \mathcal{S} .*

3 The Fourier transform on L^2

Definition 1. Let $f \in L^2$. Let $f_k, k = 1, 2, \dots$, be Schwartz functions with

$$\lim_{k \rightarrow \infty} f_k = f,$$

where l.i.m. stands for convergence in L^2 . The Fourier transform of f is defined by

$$\hat{f} = \mathcal{F}[f] = \lim_{k \rightarrow \infty} \hat{f}_k.$$

One must explain why this definition makes sense:

Theorem 2. Let $f \in L^2$. Let $f_k, k = 1, 2, \dots$, be Schwartz functions with

$$\lim_{k \rightarrow \infty} f_k = f.$$

(a) The sequence \hat{f}_k in \mathcal{S} converges in L^2 .

(b) Let also $\tilde{f}_k, k = 1, 2, \dots$, be Schwartz functions with

$$\lim_{k \rightarrow \infty} \tilde{f}_k = f.$$

Then the L^2 -limits of the \hat{f}_k and the \tilde{f}_k are the same.

Proof. This immediately follows from the fact that $\frac{1}{\sqrt{2\pi}}\mathcal{F}$ preserves the L^2 -norm on \mathcal{S} . \square

4 The Fourier transform on L^2 preserves L^2 -products up to 2π

Theorem 3. If f and g are L^2 -functions, then

$$\int_{-\infty}^{\infty} \hat{f}(t) \overline{\hat{g}(t)} dt = 2\pi \int_{-\infty}^{\infty} f(x) \overline{g(x)} dx.$$

Proof. Let $\{f_k\}_{k=1,2,\dots}$ and $\{g_k\}_{k=1,2,\dots}$ be sequences in \mathcal{S} with

$$\lim_{k \rightarrow \infty} f_k = f, \quad \lim_{k \rightarrow \infty} g_k = g.$$

Then, denoting the L^2 -inner product by $\langle \cdot, \cdot \rangle$,

$$\begin{aligned} \int_{-\infty}^{\infty} \hat{f}(t) \overline{\hat{g}(t)} dt &= \langle \hat{f}, \hat{g} \rangle = \lim_{k \rightarrow \infty} \langle \hat{f}_k, \hat{g}_k \rangle = 2\pi \lim_{k \rightarrow \infty} \langle f_k, g_k \rangle = 2\pi \langle f, g \rangle = \\ &= 2\pi \int_{-\infty}^{\infty} f(x) \overline{g(x)} dx. \end{aligned}$$

\square

Corollary 2. If $f \in L^2$, then

$$\|\hat{f}\|_2 = \sqrt{2\pi} \|f\|_2.$$

Corollary 3. Let f and f_k , $k = 1, 2, \dots$, be L^2 -functions. Assume that

$$\lim_{k \rightarrow \infty} f_k = f,$$

where l.i.m. stands for the L^2 -limit. Then

$$\lim_{k \rightarrow \infty} \hat{f}_k = \hat{f}.$$

5 On $L^1 \cap L^2$, the two definitions coincide

Theorem 4. Let $f \in L^1 \cap L^2$. Then $\hat{f} = \mathcal{F}[f]$ in the sense of Definition 1 is the same as

$$\int_{-\infty}^{\infty} f(x) e^{ixt} dx.$$

Proof. There are functions $\varphi_k \in \mathcal{S}$, $k = 1, 2, \dots$, which converge to f in both L^1 and L^2 . (Construct φ_k by convolving $f \cdot 1_{[-k,k]}$ with $k\psi(kx)$, where $\psi \in C_c^\infty$ is non-negative with integral 1, for instance.) Then

$$\mathcal{F}[f] = \lim_{k \rightarrow \infty} \mathcal{F}[\varphi_k]$$

by Definition 1, where on the right-hand side, \mathcal{F} is to be understood in the L^1 -sense, so

$$\mathcal{F}[\varphi_k] = \int_{-\infty}^{\infty} \varphi_k(x) e^{ixt} dx.$$

But also

$$\lim_{k \rightarrow \infty} \mathcal{F}[\varphi_k] = \lim_{k \rightarrow \infty} \int_{-\infty}^{\infty} \varphi_k(x) e^{ixt} dx = \int_{-\infty}^{\infty} f(x) e^{ixt} dx$$

because the φ_k converge to f in L^1 . □

Combining Corollary 3 with Theorem 4, we find the following corollary.

Corollary 4. Let $f \in L^2$. Then

$$\hat{f} = \lim_{k \rightarrow \infty} \int_{-k}^k f(x) e^{ixt} dx.$$

6 The inversion theorem

Theorem 5. Let $f \in L^2$. Then

$$f = \text{l.i.m.}_{r \rightarrow \infty} \frac{1}{\sqrt{2\pi}} \int_{-r}^r \hat{f}(t) e^{-itx} dt = \frac{1}{\sqrt{2\pi}} \hat{\hat{f}}(-x).$$

Proof. Let $f_k \in \mathcal{S}$ with $\text{l.i.m.}_{k \rightarrow \infty} f_k = f$. Then $\text{l.i.m.}_{k \rightarrow \infty} \hat{f}_k(-x) = \hat{\hat{f}}(-x)$ by Corollary 3. Therefore

$$f = \text{l.i.m.}_{k \rightarrow \infty} f_k(x) = \text{l.i.m.}_{k \rightarrow \infty} \frac{1}{\sqrt{2\pi}} \text{l.i.m.}_{k \rightarrow \infty} \hat{f}_k(-x) = \frac{1}{\sqrt{2\pi}} \hat{\hat{f}}(-x).$$

□

7 The Fourier transform as an automorphism of L^2

Theorem 6. $\mathcal{F}: L^2 \rightarrow L^2$ is a bijection.

Proof. Since $\|\hat{f}\|_2 = \sqrt{2\pi} \|f\|_2$, $\hat{f} = 0$ implies $f = 0$. This means that \mathcal{F} is injective. To show that it is surjective, let $f \in L^2$. Then for almost all x ,

$$f(x) = \frac{1}{\sqrt{2\pi}} \hat{f}(-x) = \frac{1}{\sqrt{2\pi}} \mathcal{F}[\hat{f}(-t)](x),$$

so

$$f = \mathcal{F} \left[\frac{\hat{f}(-t)}{\sqrt{2\pi}} \right].$$

This shows that f is the Fourier transform of an L^2 -function. □

8 Symmetry

Theorem 7. For all $f, g \in L^2$,

$$\int_{-\infty}^{\infty} f(r) \hat{g}(r) dr = \int_{-\infty}^{\infty} \hat{f}(s) g(s) ds. \quad (1)$$

Notice that $f \in L^2$ and $\hat{g} \in L^2$ imply $f\hat{g} \in L^1$ by the Cauchy-Schwarz inequality, and similarly $\hat{f}g \in L^1$. This does not mean that \mathcal{F} is Hermitian — it is not. There are no complex conjugates in (1).

Proof. Let φ_k and ψ_k , $k \in \mathbb{N}$, be Schwartz functions that converge in L^2 to f and g , respectively. Then

$$\begin{aligned} & \left| \int_{-\infty}^{\infty} f(r) \hat{g}(r) dr - \int_{-\infty}^{\infty} f_k(r) \hat{g}_k(r) dr \right| = \\ & \left| \int_{-\infty}^{\infty} f(r) \hat{g}(r) dr - \int_{-\infty}^{\infty} f_k(r) \hat{g}(r) dr + \int_{-\infty}^{\infty} f_k(r) \hat{g}(r) dr - \int_{-\infty}^{\infty} f_k(r) \hat{g}_k(r) dr \right| \leq \\ & \|f - f_k\|_2 \|\hat{g}\|_2 + \|f_k\|_2 \|\hat{g} - \hat{g}_k\|_2 \end{aligned} \tag{2}$$

by the Cauchy-Schwarz inequality. The expression in (2) converges to 0 as $k \rightarrow \infty$. Therefore

$$\int_{-\infty}^{\infty} f(r) \hat{g}(r) dr = \lim_{k \rightarrow \infty} \int_{-\infty}^{\infty} f_k(r) \hat{g}_k(r) dr = \lim_{k \rightarrow \infty} \int_{-\infty}^{\infty} \hat{f}_k(s) g_k(s) ds.$$

This limit equals

$$\int_{-\infty}^{\infty} \hat{f}(s) g(s) ds$$

for the same reason for which $\int_{-\infty}^{\infty} f(r) \hat{g}(r) dr = \lim_{k \rightarrow \infty} \int_{-\infty}^{\infty} f_k(r) \hat{g}_k(r) dr$. \square