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Intended readers: At roughly the level of a first-year graduate student of mathematics.

Specific prerequisites include Lebesgue integration and some properties of L!; Fatou’s
lemma and the dominated convergence theorem; the notion of Banach space; the open
mapping theorem (I state it here, but | don’t prove it)

Feedback: If you find this useful, or if you have comments or suggestions, or if you just
want to say hello, | would very much enjoy hearing from you: cborgers@tufts.edu.
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1 Definition of the Fourier transform

The symbol L! always denotes the space of absolutely integrable functions R — C here,
and | -||; denotes the L!-norm.

Definition 1. Let f € L!. The Fourier transform of f is the function

f(f)=/_oof(x)e”x dx, teRR.

We also write F|[ f] instead of f.




Often one sees the factor ﬁ or the factor ﬁ in front of the integral, and often one sees
a minus sign in the exponent. The notational convention | use here is in agreement with the
usual definition of characteristic functions of probability measures, which are Fourier trans-
forms of probability measures. (Part 5 of this series on the Fourier transform will discuss
characteristic functions in detail.)

| will note a straightforward but useful fact. Let f € L!. The Fourier transform of the
function f(-x), evaluated at ¢, is the same as the Fourier transform of the function f(x),
evaluated at —7:

F(=x)(t) = fF(x)(~t) forallt.
Using F instead of hats:

FLF(=0)]() = F[f(x)](~t) forallz.

Here is the calculation that verifies this:

=0 @) = / : f(=x)e™ dx = / : F(w)e ™ dy = / : F(x)e ™ dx = f(x)(~1).

2 All functions in F(L!) belong to C,

| will denote by Cj the set of all functions R — C with limit 0 at oo (that’s what the subscript
0 refers to).

Proposition 1. If f € L, then f € C.

Proof. ForteR and heR,

lf(t+h)-f(2)|= ‘/_Oof(x)ei’x(eihx—l) dx S/_oo |f(x)||eihx—l‘ dx.

This tends to zero as & — 0 by the dominated convergence theorem. Therefore f is contin-
uous. It remains to prove that

VieLl |1|im f(r)=0. (1)
t|—>o0
This is also called the Riemann-Lebesgue lemma.

First we prove the weaker statement that

VfeC® lim f(r) =0, 2)

lt|=o00



where C2° denotes the space of C*-functions from R into C with compact support. This is
true because for f € C° andt # 0,

0= [ swetan=- [ @S =0,
SO

70| < o L) Ol / £ ()] d.

Now we use that C° is dense in L!: For f € L' and € > 0, there is a function ¢ € C=° so
that | f —@l|; <€. Now

If-¢oli<e = [Ff-9|<e

Since by (2), §(¢) - 0 as [t| - oo, we conclude

limsup|f ()| <&,

jt|>o0
and since this is true for all € > 0, (1) follows. O

Some easy observations about Cy:

Proposition 2. (a) Functions in Cy are uniformly continuous. (b) When equipped with
the infinity norm, Cy is a Banach space.

Proof. (a) Let geCy. Let € >0. There exists a T > 0 so that
€
lg(®)| <= ifft|>T.
2
Since g is uniformly continuous on [-2T,2T |, there exists a 8 > 0 so that for ¢, ¢, € [-2T,2T ]
with |¢; — 1] < 9, we have |g(#;) — g(t2)| < €. Without loss of generality, < T. It t1,; € R and
|t; — 12| < §, then either both #; and t, lie in [-2T,2T], in which case |g(7;) - g(t2)| <&, or

both #; and 1, lie outside [-7',T'], in which case [g(t1) — g(t2)| < |g(t1)| +]g(r2)| < 5+ 5 =€.
This proves (a). (b) is straightforward O

3 Not all functions in F(L!) belong to L!

A simple counterexample is f(x) = 1;_y,17- Its Fourier transform is, for z 0,

1 1 : x=1
. t t
/ "™ dx =/ cos(tx)dx = [sm( x)] =2 ﬂ
-1 -1 t x=—1 t

which isn’t an L!-function.




4 Symmetry of the Fourier transform

Theorem 1. For feL! andgeLl,

| seamar= [ f)ss) ds @

The formula makes sense because f and g are bounded continuous functions, therefore fg
and f¢ are L!-functions. | use the variable names r and s instead of x or ¢ here, because
x is typically reserved for the independent variable of f and g, while ¢ is reserved for the
independent variable of f and g, but here a single independent variable name is needed for
f and g, and similarly for f and g.

One can read the formula as saying that the Fourier transform is symmetric (but not
Hermitian, since there are no complex conjugates in (3)).

[ as= [ ( e dr) (s) ds.

Since f(r)g(s)e’ is an absolutely integrable function of (r,s), we may re-write the nested

integral as . ) .
/_Oof(”) (/_oog(s)e”sds) dr:/_oof(r)g(,,) dr

Symmetry turns out to be the key property needed for proving the Fourier inversion
theorem, as | will now explain.

Proof.

O

5 The Fourier inversion theorem for L!-functions

Theorem 2. If f ¢ L1, then

1 [ . .
f(x) = iy = / F(t)e ™ &€ dr for almost all x. (4)
£~ o

Before proving Theorem 2, I'll state an obvious consequence.

Corollary 1. If feL! and f € L!, then

1 [, :
f(x)= E/ f(t)e ™ dt  for almost all x.




This follows from Theorem 2 by the dominated convergence theorem. We get f back from
f by Fourier transforming f once more, but then putting a minus sign into the argument and
dividing by 27:

f( X)

f(x) =

This formula is valid only if both f and f are in L!. However, (4) holds generally, under the
assumption that f e L.

Proof. For almost all x € R,

f(x)zg_')OJr\/_/ flx+s)e -5°1(20%) g, (5)

This is a well-known fact of analysis. Next we make the observation that

220 _ Fle 2] (s) _
V2n

The proof is a simple calculation:

f[e—cztz/Z](s) _ /oo e—cztz/Zeits dt :/ e © 212 2+its+s7 [ (267) dt e -s%/(26? ) —

/°° 6_(07;”%0) dr e='129%) =

(now substitute u = 61/1/2)

N2
V27 i) gy oot V2T 2t
c c
This implies (6). Using (6) in (5), we find:
£ = tim 5 [ ) Fle ) ds ™

for almost all x. Now we use the symmetry property to move F from one factor in the
Fourier transform to the other. So we have to take the Fourier transform of f(x+s), seen as
a function of s, and evaluate it at z. This yields

/°° flx+5)e™ ds.
Substitute u = x +s: h
/Oof(u)eit(”_x) du = f(t)e ™,
Therefore we obtain from (7): -
f(x)= hm —/ f(r)e ™ e ~o')2 4

This is equivalent to (4). O



Corollary 2. The linear map
F: Ll - C()

is injective.

This follows immediately from the inversion theorem: When f =0, then f = 0.

6 Not all functions in C, belong to F(L')

There is a very brief and abstract argument that implies that not all functions in Cy belong
to F(L'), and in fact even a compactly supported continuous function need not belong to
F(L'). The argument does not yield a counterexample, it just proves that one must exist.
It is based on the open mapping theorem from functional analysis, which | will state but not
prove here.

Theorem 3 (Open Mapping Theorem). Let X andY be Banach spaces, and let
F: X->Y

be a continuous linear mapping. If F is surjective, then F maps open sets in X onto
open sets inY . In particular, if F is bijective, its inverse is continuous.

We denote by C.([-1,1]) the set of continuous functions R — C with support contained
in[-1,1].

Theorem 4. There are functions in C.([-1,1]) that are not Fourier transforms of L!-
functions.

Proof. Cy, equipped with the L>-norm, is a Banach space, and C.([-1,1]) is a closed
subspace of it, so itself a Banach space. The mapping

F: L1—>C()

is continuous. Therefore the pre-image of C.([-1,1]) is a closed subspace of L!. We call
this subspace V. Equipped with the L!-norm, it is a Banach space. So

F:V->C([-1,1])
is a continuous linear map, and it is injective. We will prove that it cannot be surjective.

Suppose it were surjective. Then by the open mapping theorem, its inverse would be
continuous. We will prove that this cannot be the case, by producing a sequence {gk}kzl,z,m
in C.([-1,1]) with g = fi, fr € L', and | gx[ o = 1 for all k, but {| fi[1 }z=1.2.... is unbounded.



Here is the function g:

~ 1

-~

~—
<
>

-2 -1 0 1 2

Y T 1-1/k

We have

1 1 !
gr(x) :/_lgk(t) e dt:/_lgk(t) cos(xt) dtzz/o gi(t) cos(xt) dt =

1-1/k 1 2k 1
2/ cos(xt) dt+2k/ (1-1) cos(xt) dt:—z(cos((l——)x)—cosx).
0 1-1/k x k

This is an L!-function. From the Fourier inversion theorem, we now conclude

(1) = 5 u(-1) = 3 F (@) (~1) = 5= F (@) (1) =

A (1))

So the gy are the Fourier transforms of the L!-functions

fi(x) = %(Cos((l—%)x)—cosx).

By Fatou’s Lemma,

© k
liminf| fi|; = liminf [ —
iminf | /i =limin / ]

/ liminfi2
_oo k—oo TX
cos cos((l 1)) sin( ¢ )x
X- -—lx]= X——-x|-

k k ]k

for some c € (0,1). Therefore
cos((l 1)) cos
——]x]-cosx
k

co(1- 1)) o

o k 1
/ liminf—2 cos((l——)x)—cosx
—oo k—oo TX k

liminf | fi |1 = oo.
k—o0

dx >

Now

k
= lim —

. k
liminf — 3
k—o0 TUX

k—oco TXZ

So

dx =00

and therefore



This is a non-constructive proof. | did not produce a counterexample, | just proved that
one must exist. It's not a matter of behavior at infinity: There are continuous functions with
compact support that do not belong to F(L').

7 Nice functions in Cy belong to F(L!)

Definition 2. We call a continuous function g: R — C piecewise C? if either it is twice
continuously differentiable, or there are numbers

—00<<...<Iy<0o0

so that g is C? on the intervals Iy = (—OO,Z‘]], I = [l‘],l‘z], v In_q = [tN_],tN], Iy =
[tN,OO).

Proposition 3. Let g € Cy, and make the following additional assumptions.
(i) geLl,
(i) Jim g'(2)=0,
t|—>o0
(iii) g is piecewise C2, and on each of the subintervals on which g is C2, g" is abso-
lutely integrable.

Then g is the Fourier transform of an Ly -function.

A4-/\ AN 0
% \/\/——

t

Proof. Itis enough to show that ¢ € L!. Namely, in that case

s =580 =F(52) (0= #(£0) ),

so g is the Fourier transform of the L!-function & x).

Let I, ...,Iy be the intervals as in Definition 2. If g€ C2, let N =0 and I = R. Then

eitx
8(x)= Z e dt = Z g'(t); dr.



(The boundary terms at +oo vanish because g € Cy, and the interior boundary terms cancel.)
Integrating by parts once more, we obtain boundary terms that no longer cancel (although
the ones at +oo still vanish because of condition (b)), and integral terms. All terms are
O(1/x?) by assumption (c), so g € L?. O

8 The Wiener algebra

Definition 3. The subspace
A=F(L")gC

is called the Wiener algebra.

With respect to the L*°-norm, A s dense in Cy, since C° € A and even C° is dense in
Co. Therefore A isn’t closed topologically; its closure is all of Cy. It is, however, closed
with respect to multiplication; this is the content of the next theorem. (This property is what
makes it an algebra — a vector space together with a multiplication that's compatible with
the vector space operations in the obvious ways.)

Theorem 5. Ifg; €A and g, €A, then g -g, € A.

Proof. Suppose f; and f, are L!-functions with g; = f; and g» = f>. We will first prove that
the convolution

i )= [ T A0 A0) dy

is an L!-function. In fact,
/.

By Tonelli’s theorem, this equals

o0

[ aGns0) dy‘ axs [ ( [ iAG11R0) dy) dx.

o0

[ ([Cinemas) ieorar=1an iah.

[ee) [ee)

The Fourier transform of f; * f, is

/_ / Fi(r-y)fa(y) dy € dx= / / Fi (=) £y (1) dy dx.

By Fubini’s theorem, this equals

/ T (e y)e g / " HO) dy= i) Falt) = 21(1) 82(0).
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