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1 Definition of the Fourier transform

The symbol L1 always denotes the space of absolutely integrable functions R→ C here,
and ∥ ⋅ ∥1 denotes the L1-norm.

Definition 1. Let f ∈ L1. The Fourier transform of f is the function

f̂ (t) =
ˆ
∞

−∞

f (x)eitx dx, t ∈R.

We also write F[ f ] instead of f̂ .

1



Often one sees the factor 1
√

2π
or the factor 1

2π
in front of the integral, and often one sees

a minus sign in the exponent. The notational convention I use here is in agreement with the
usual definition of characteristic functions of probability measures, which are Fourier trans-
forms of probability measures. (Part 5 of this series on the Fourier transform will discuss
characteristic functions in detail.)

I will note a straightforward but useful fact. Let f ∈ L1. The Fourier transform of the
function f (−x), evaluated at t, is the same as the Fourier transform of the function f (x),
evaluated at −t:

f̂ (−x)(t) = f̂ (x)(−t) for all t.

Using F instead of hats:

F[ f (−x)](t) = F[ f (x)](−t) for all t.

Here is the calculation that verifies this:

f̂ (−x)(t) =
ˆ
∞

−∞

f (−x)eixt dx =
ˆ
∞

−∞

f (u)e−iutdu =
ˆ
∞

−∞

f (x)e−ixtdx = f̂ (x)(−t).

2 All functions in F (L1) belong to C0

I will denote by C0 the set of all functions R→C with limit 0 at ±∞ (that’s what the subscript
0 refers to).

Proposition 1. If f ∈ L1, then f̂ ∈C0.

Proof. For t ∈R and h ∈R,

∣ f (t +h)− f (t)∣ = ∣
ˆ
∞

−∞

f (x)eitx (eihx−1) dx∣ ≤
ˆ
∞

−∞

∣ f (x)∣ ∣eihx−1∣ dx.

This tends to zero as h→ 0 by the dominated convergence theorem. Therefore f̂ is contin-
uous. It remains to prove that

∀ f ∈ L1 lim
∣t∣→∞

f̂ (t) = 0. (1)

This is also called the Riemann-Lebesgue lemma.

First we prove the weaker statement that

∀ f ∈C∞c lim
∣t∣→∞

f̂ (t) = 0, (2)
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where C∞c denotes the space of C∞-functions from R into C with compact support. This is
true because for f ∈C∞c and t ≠ 0,

f̂ (t) =
ˆ
∞

−∞

f (x)eixt dx = −
ˆ
∞

−∞

f ′(x)e
ixt

it
dx = i

t
F[ f ′(x)](t),

so

∣ f̂ (t)∣ ≤ 1
∣t ∣ ∣F[ f

′(x)](t)∣ ≤ 1
∣t ∣

ˆ
∞

−∞

∣ f ′(x)∣ dx.

Now we use that C∞c is dense in L1: For f ∈ L1 and ε > 0, there is a function ϕ ∈C∞c so
that ∥ f −ϕ∥1 ≤ ε. Now

∥ f −ϕ∥1 ≤ ε ⇒ ∥ f̂ − ϕ̂∥∞ ≤ ε.

Since by (2), ϕ̂(t) → 0 as ∣t ∣ →∞, we conclude

limsup
∣t∣→∞

∣ f̂ (t)∣ ≤ ε,

and since this is true for all ε > 0, (1) follows.

Some easy observations about C0:

Proposition 2. (a) Functions in C0 are uniformly continuous. (b) When equipped with
the infinity norm, C0 is a Banach space.

Proof. (a) Let g ∈C0. Let ε > 0. There exists a T > 0 so that

∣g(t)∣ ≤ ε

2
if ∣t ∣ ≥ T .

Since g is uniformly continuous on [−2T,2T ], there exists a δ> 0 so that for t1,t2 ∈ [−2T,2T ]
with ∣t1− t2∣ ≤ δ, we have ∣g(t1)−g(t2)∣ ≤ ε. Without loss of generality, δ ≤ T . It t1,t2 ∈R and
∣t1 − t2∣ ≤ δ, then either both t1 and t2 lie in [−2T,2T ], in which case ∣g(t1)−g(t2)∣ ≤ ε, or
both t1 and t2 lie outside [−T,T ], in which case ∣g(t1)−g(t2)∣ ≤ ∣g(t1)∣+ ∣g(t2)∣ ≤ ε

2 + ε

2 = ε.
This proves (a). (b) is straightforward

3 Not all functions in F (L1) belong to L1

A simple counterexample is f (x) = 1
[−1,1]. Its Fourier transform is, for t ≠ 0,

ˆ 1

−1
eitx dx =

ˆ 1

−1
cos(tx)dx = [sin(tx)

t
]

x=1

x=−1
= 2

sint
t

,

which isn’t an L1-function.
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4 Symmetry of the Fourier transform

Theorem 1. For f ∈ L1 and g ∈ L1,
ˆ
∞

−∞

f (r)ĝ(r) dr =
ˆ
∞

−∞

f̂ (s)g(s) ds. (3)

The formula makes sense because f̂ and ĝ are bounded continuous functions, therefore f̂ g
and f ĝ are L1-functions. I use the variable names r and s instead of x or t here, because
x is typically reserved for the independent variable of f and g, while t is reserved for the
independent variable of f̂ and ĝ, but here a single independent variable name is needed for
f and ĝ, and similarly for f̂ and g.

One can read the formula as saying that the Fourier transform is symmetric (but not
Hermitian, since there are no complex conjugates in (3)).

Proof. ˆ
∞

−∞

f̂ (s)g(s) ds =
ˆ
∞

−∞

(
ˆ
∞

−∞

f (r)eirs dr) g(s) ds.

Since f (r)g(s)eirs is an absolutely integrable function of (r,s), we may re-write the nested
integral as ˆ

∞

−∞

f (r)(
ˆ
∞

−∞

g(s)eirs ds) dr =
ˆ
∞

−∞

f (r)ĝ(r) dr.

Symmetry turns out to be the key property needed for proving the Fourier inversion
theorem, as I will now explain.

5 The Fourier inversion theorem for L1-functions

Theorem 2. If f ∈ L1, then

f (x) = lim
ε→0+

1
2π

ˆ
∞

−∞

f̂ (t)e−itx e−ε
2t2

dt for almost all x. (4)

Before proving Theorem 2, I’ll state an obvious consequence.

Corollary 1. If f ∈ L1 and f̂ ∈ L1, then

f (x) = 1
2π

ˆ
∞

−∞

f̂ (t)e−itx dt for almost all x.
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This follows from Theorem 2 by the dominated convergence theorem. We get f back from
f̂ by Fourier transforming f̂ once more, but then putting a minus sign into the argument and
dividing by 2π:

f (x) =
ˆ̂f (−x)
2π

.

This formula is valid only if both f and f̂ are in L1. However, (4) holds generally, under the
assumption that f ∈ L1.

Proof. For almost all x ∈R,

f (x) = lim
ε→0+

1√
2πσ2

ˆ
∞

−∞

f (x+ s)e−s2
/(2σ

2
) ds. (5)

This is a well-known fact of analysis. Next we make the observation that

e−s2
/(2σ

2
) = σ

F[e−σ
2t2
/2](s)√

2π
. (6)

The proof is a simple calculation:

F[e−σ
2t2
/2](s) =

ˆ
∞

−∞

e−σ
2t2
/2eits dt =

ˆ
∞

−∞

e−σ
2t2
/2+its+s2

/(2σ
2
) dt e−s2

/(2σ
2
) =

ˆ
∞

−∞

e−(
σt√

2
+i s√

2 σ
)

2

dt e−s2
/(2σ

2
) = ...

(now substitute u = σt/
√

2)

... =
√

2
σ

ˆ
∞

−∞

e−(u+i s√
2 σ
)

2

du e−s2
/(2σ

2
) =
√

2π

σ
e−s2

/(2σ
2
).

This implies (6). Using (6) in (5), we find:

f (x) = lim
σ→0+

1
2π

ˆ
∞

−∞

f (x+ s) F[e−σ
2t2
/2](s) ds (7)

for almost all x. Now we use the symmetry property to move F from one factor in the
Fourier transform to the other. So we have to take the Fourier transform of f (x+s), seen as
a function of s, and evaluate it at t. This yieldsˆ

∞

−∞

f (x+ s)eits ds.

Substitute u = x+ s: ˆ
∞

−∞

f (u)eit(u−x) du = f̂ (t)e−itx.

Therefore we obtain from (7):

f (x) = lim
σ→0+

1
2π

ˆ
∞

−∞

f̂ (t)e−itx e−σ
2t2
/2 dt.

This is equivalent to (4).
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Corollary 2. The linear map
F ∶ L1→C0

is injective.

This follows immediately from the inversion theorem: When f̂ = 0, then f = 0.

6 Not all functions in C0 belong to F (L1)

There is a very brief and abstract argument that implies that not all functions in C0 belong
to F(L1), and in fact even a compactly supported continuous function need not belong to
F(L1). The argument does not yield a counterexample, it just proves that one must exist.
It is based on the open mapping theorem from functional analysis, which I will state but not
prove here.

Theorem 3 (Open Mapping Theorem). Let X and Y be Banach spaces, and let

F ∶ X →Y

be a continuous linear mapping. If F is surjective, then F maps open sets in X onto
open sets in Y . In particular, if F is bijective, its inverse is continuous.

We denote by Cc([−1,1]) the set of continuous functions R→C with support contained
in [−1,1].

Theorem 4. There are functions in Cc([−1,1]) that are not Fourier transforms of L1-
functions.

Proof. C0, equipped with the L∞-norm, is a Banach space, and Cc([−1,1]) is a closed
subspace of it, so itself a Banach space. The mapping

F ∶ L1→C0

is continuous. Therefore the pre-image of Cc([−1,1]) is a closed subspace of L1. We call
this subspace V . Equipped with the L1-norm, it is a Banach space. So

F ∶ V →Cc([−1,1])

is a continuous linear map, and it is injective. We will prove that it cannot be surjective.

Suppose it were surjective. Then by the open mapping theorem, its inverse would be
continuous. We will prove that this cannot be the case, by producing a sequence {gk}k=1,2,...
in Cc([−1,1]) with gk = f̂k, fk ∈ L1, and ∥gk∥∞ = 1 for all k, but {∥ fk∥1}k=1,2,... is unbounded.
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Here is the function gk:

-2 -1 0 1 2
0

1

We have

ĝk(x) =
ˆ 1

−1
gk(t) eixt dt =

ˆ 1

−1
gk(t) cos(xt) dt = 2

ˆ 1

0
gk(t) cos(xt) dt =

2
ˆ 1−1/k

0
cos(xt) dt +2k

ˆ 1

1−1/k
(1− t) cos(xt) dt = 2k

x2 (cos((1− 1
k
)x)−cosx) .

This is an L1-function. From the Fourier inversion theorem, we now conclude

gk(t) =
1

2π
ˆ̂gk(−t) =

1
2π
F(ĝk(x))(−t) =

1
2π
F(ĝk(−x))(t) =

F ( k
πx2 (cos((1− 1

k
)x)−cosx))(t)

So the gk are the Fourier transforms of the L1-functions

fk (x) =
k

πx2 (cos((1− 1
k
)x)−cosx) .

By Fatou’s Lemma,

liminf
k→∞

∥ fk∥1 = liminf
k→∞

ˆ
∞

−∞

k
πx2 ∣cos((1− 1

k
)x)−cosx∣ dx ≥

ˆ
∞

−∞

liminf
k→∞

k
πx2 ∣cosx−cos((1− 1

k
)x)∣ dx.

Now

cosx−cos((1− 1
k
)x) = sin(x− c

k
x) x

k
for some c ∈ (0,1). Therefore

liminf
k→∞

k
πx2 ∣cos((1− 1

k
)x)−cosx∣ = lim

k→∞

k
πx2 ∣cos((1− 1

k
)x)−cosx∣ = 1

π
∣sinx

x
∣ .

So ˆ
∞

−∞

liminf
k→∞

k
πx2 ∣cos((1− 1

k
)x)−cosx∣ dx =∞

and therefore
liminf

k→∞
∥ fk∥1 =∞.
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This is a non-constructive proof. I did not produce a counterexample, I just proved that
one must exist. It’s not a matter of behavior at infinity: There are continuous functions with
compact support that do not belong to F(L1).

7 Nice functions in C0 belong to F (L1)

Definition 2. We call a continuous function g ∶ R→C piecewise C2 if either it is twice
continuously differentiable, or there are numbers

−∞< t1 < . . . < tN <∞

so that g is C2 on the intervals I0 = (−∞,t1], I1 = [t1,t2], . . ., IN−1 = [tN−1,tN], IN =
[tN ,∞).

Proposition 3. Let g ∈C0, and make the following additional assumptions.

(i) g ∈ L1,

(ii) lim
∣t∣→∞

g′(t) = 0,

(iii) g is piecewise C2, and on each of the subintervals on which g is C2, g′′ is abso-
lutely integrable.

Then g is the Fourier transform of an L1-function.

Proof. It is enough to show that ĝ ∈ L1. Namely, in that case

g(t) = 1
2π

ˆ̂g(−t) = F ( ĝ(x)
2π
)(−t) = F ( ĝ(−x)

2π
)(t),

so g is the Fourier transform of the L1-function ĝ(−x)
2π

.

Let I0, . . . ,IN be the intervals as in Definition 2. If g ∈C2, let N = 0 and I0 =R. Then

ĝ(x) =
N
∑
j=0

ˆ
I j

g(t)eitx dt = −
N
∑
j=0

ˆ
I j

g′(t)e
itx

ix
dt.
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(The boundary terms at ±∞ vanish because g ∈C0, and the interior boundary terms cancel.)
Integrating by parts once more, we obtain boundary terms that no longer cancel (although
the ones at ±∞ still vanish because of condition (b)), and integral terms. All terms are
O(1/x2) by assumption (c), so ĝ ∈ L2.

8 The Wiener algebra

Definition 3. The subspace
A = F(L1) ⊊C0

is called the Wiener algebra.

With respect to the L∞-norm, A s dense in C0, since C∞c ⊆ A and even C∞c is dense in
C0. Therefore A isn’t closed topologically; its closure is all of C0. It is, however, closed
with respect to multiplication; this is the content of the next theorem. (This property is what
makes it an algebra — a vector space together with a multiplication that’s compatible with
the vector space operations in the obvious ways.)

Theorem 5. If g1 ∈ A and g2 ∈ A, then g1 ⋅g2 ∈ A.

Proof. Suppose f1 and f2 are L1-functions with g1 = f̂1 and g2 = f̂2. We will first prove that
the convolution

f1∗ f2(x) =
ˆ
∞

−∞

f1(x−y) f2(y) dy

is an L1-function. In fact,
ˆ
∞

−∞

∣
ˆ
∞

−∞

f1(x−y) f2(y) dy∣ dx ≤
ˆ
∞

−∞

(
ˆ
∞

−∞

∣ f1(x−y)∣ ∣ f2(y)∣ dy) dx.

By Tonelli’s theorem, this equals
ˆ
∞

−∞

(
ˆ
∞

−∞

∣ f1(x−y)∣ dx)‘∣ f2(y)∣ dy = ∥ f1∥1 ∥ f2∥1.

The Fourier transform of f1∗ f2 is
ˆ
∞

−∞

ˆ
∞

−∞

f1(x−y) f2(y) dy eixt dx =
ˆ
∞

−∞

ˆ
∞

−∞

f1(x−y)ei(x−y)t f2(y)eiyt dy dx.

By Fubini’s theorem, this equals
ˆ
∞

−∞

f1(x−y)ei(x−y)t dx
ˆ
∞

−∞

f2(y)eiyt dy = f̂1(t) f̂2(t) = g1(t) g2(t).
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