
THE RADIATION THERAPY PLANNING PROBLEM

CHRISTOPH B�ORGERS�

�� Introduction� The purpose of this paper is to describe mathemat�
ical aspects of radiation therapy planning to readers with a background in
applied mathematics�

The use of X�rays for cancer therapy began a few days after their dis�
covery� Wilhelm R�ontgen announced the discovery of X�rays on December
��� ����� and Emil Grubbe used them for cancer therapy on January ���
���	 
��
� X�rays are still the most common form of radiation used for can�
cer therapy� but beams of electrons� protons� neutrons� and other particles
are used as well� The planning of the radiation treatment of a tumor begins
with the creation of a three�dimensional image of the tumor and surround�
ing healthy tissue� using techniques such as computed tomography or MRI�
The treatment planning discussed in this article occurs after the imaging
is completed� It involves substantial use of computational algorithms�

Radiation therapy planning requires the study of radiation penetrating
a background �a portion of a patient�s body and the surrounding air� for
instance�� Both the radiation and the background are� of course� made up
of particles� We shall distinguish between the two by referring to radiation

particles and background particles� Background particles can be set in rapid
motion as a result of interactions with radiation particles� thereby becoming
radiation particles themselves� The transport of the radiation particles
through the background is described by a system of coupled Boltzmann
transport equations� see for instance Ref� 
��
� and also Sec� � of this article�
A solution of this system is a vector of phase space number densities� that is�
numbers of radiation particles per unit volume in phase space� i�e� position�
direction�energy space� Di�erent components of this vector correspond to
di�erent particle types� Even if the beams aimed at the tumor consist of
one particle type only �for instance photons� as in X�rays�� interactions
between radiation particles and the background will set in motion other
types of particles� Careful calculations therefore require consideration of
several types of radiation particles in any case�

Interactions of radiation particles with each other are negligible in this
context� The relevant transport equations are therefore linear� The speed
of the radiation particles is the speed of light �for photons� or a signi�cant
fraction of the speed of light� As a result� a steady state is reached in a time
that is extremely short in comparison with the times for which the beams
are typically turned on during treatment� which are on the order of seconds
or minutes� The relevant transport equations therefore contain no time
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derivatives� Information obtained through imaging� such as the locations
of soft tissue� bone� or air gaps� yields coe�cients in these equations�

Radiation therapy is fractionated� that is� delivered in multiple ses�
sions� Furthermore� during a single session� several beam con�gurations
may be used� A radiation therapy plan speci�es beam positions� directions�
energies� etc�� as well as when and how long the speci�ed beams are to be
turned on� This can be viewed as specifying a sequence of in�ow boundary
value problems for a system of steady linear Boltzmann equations�

The full solutions to these boundary value problems are never consid�
ered in radiation therapy planning� Of greatest interest is the total dose�
that is� the amount of energy per unit background mass deposited� during
the entire course of the treatment� as a result of excitation and ionization
events� In the language of kinetic theory� dose is a macroscopic quantity�
whereas the solution to a linear Boltzmann equation is a mesoscopic quan�
tity� Dose depends on position� to emphasize this dependence� it is often
called the dose distribution�

Strictly speaking� the dose distribution is not all that matters� Bio�
logical e�ects also depend on the type and energy of radiation used� the
fractionation schedule� etc�� see Chapter �� of Ref� 
��
 for a discussion of
these factors� However� in practice it is usually assumed that for a given
type of treatment �for instance� treatment with X�rays of a given energy
range� and using a standard fractionation schedule�� the e�ectiveness of a
given treatment plan can be predicted from the dose distribution alone�

Computing dose distributions is a matter of computational physics�
based on well�understood physical principles� In order to devise a good
treatment plan� one must also be able to evaluate the desirability of a given
dose distribution� This is most typically done by a physician based on
experience and intuition� and is not a matter of rigorous science� However�
one approach to evaluating the desirability of a given dose distribution is
to �rst estimate� based on clinical data or even radiobiological models� the
probabilities p�� ���� pn of certain events� such as eradication of the tumor�
damage to or destruction of healthy organs� pain relief as a result of tumor
size reduction� etc� One can then use a function � � ��p�� ���� pn� as the
measure of desirability� Obviously � depends on subjective preferences�
Refs� 
��
 and 
��
 are basic articles on this sort of approach�

�� Dose calculation� As discussed in the introduction� dose calcu�
lation means the computation of macroscopic information related to the
solution of an in�ow boundary value problem for a system of steady linear
Boltzmann equations� see Ref� 
��
 for a recent survey of this aspect of the
problem� and an extensive literature list� To make this more concrete for
readers not familiar with the linear Boltzmann equation� we shall outline
the derivation of the equation for the special case of a single species of
particles moving through a homogeneous� scattering� non�absorbing back�
ground� see Sec� ��� of Ref� 
��
�
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Consider a particle moving through a background� Assume that the
particle experiences collisions with the background at random times� and
that the times between collisions are independent of each other� exponen�
tially distributed� with an expected value depending on the pre�collision
kinetic energy of the particle� This expected value is called the mean free

time� Assume further that the collisions cause random direction and en�
ergy changes� As a result� the phase space coordinates of the particle� i�e�
its position x � IR�� direction � � S�� and energy E � �� at time t are
random� Denote their probability density by f�x� �� E� t�� When a particle
with pre�collision direction �� � S� and pre�collision energy E� � � under�
goes a collision� its post�collision direction � � S� and energy E � � are
random� with probability density

�

��
p�� � ��� E�E�� ������

This expression depends on the dot product � � ��� but not on � and ��

individually� re�ecting isotropy of scattering� If we de�ne � � ���� � 
��� �

to be the cosine of the angle between the pre� and post�collision directions�
the probability density of the pair ���E�� for a given E�� is p���E�E���
without the factor of ����� A particle with kinetic energy E � � has
velocity v�E� and mean free time � �E�� The probability density p���E�E��
is close to zero unless � is close to one� That is� the de�ection experienced
by a particle in a single collision is likely to be small� see for instance Ref�

��
� One expresses this by saying that the scattering is strongly forward�

peaked�
With the notation introduced above�

ft � v�� � r�f � Q�f ������

with

�Q�f����E� �
�

��

Z �

�

Z
���S�

p�� ���� E�E��
f���� E��

� �E��
d��dE�� f���E�

� �E�
�

�����
In Eq� ������ we have omitted the dependence on x and t for notational
simplicity� The left�hand side in Eq� ����� corresponds to the streaming of
the particle between collisions� On the right�hand side of Eq� ������ the term
with the minus sign corresponds to the particle being �lost� by entering a
collision� and the integral corresponds to the particle �re�emerging� from
a collision with altered direction and energy� Up to now� we have thought
of a single particle� and of f as the probability density function of its
phase space location� Alternatively� we can think of a very large number of
particles� independent of each other� and of f as their phase space number
density� This is how we shall think from now on�

It is customary to introduce the independent variable

	 � vf ������
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called the �ux� and the quantity


s�E� �
�

v�E�� �E�
������

called the scattering cross�section� Using this notation� and dropping the
time derivative� Eq� ����� becomes

�� � r�	 � Q	 ����	�

where

Q	���E� �
�

��

Z �

�

Z
���S�

p�� � ��� E�E��
s�E
��	���� E��d��dE������

�
s�E�	���E� �

Background inhomogeneity makes 
s and p functions of x�
Let � � IR� be a bounded region with a smooth boundary ��� Let n �

n�x�� x � ��� denote the exterior unit normal vector �eld on ��� A well�
posed boundary value problem for 	 � 	�x� �� E�� �x� �� E� � ��S��IR��
is obtained by supplementing Eq� ���	� with the in�ow boundary condition

	�x� �� E� � g�x� �� E� for x � ��� � � S�� � �n�x� � �� E � � ������

For the mathematical theory of in�ow boundary value problems for linear
Boltzmann equations� see for instance Chapter �� of Ref� 
��


To illustrate how dose distributions can be obtained from the solutions
to boundary value problems for linear Boltzmann equations� let us compute
an expression for the time rate at which the particles deposit energy in the
background in our simpli�ed setting� The expected amount of energy lost
by a particle with pre�collision direction �� and pre�collision energy E� in
a collision is

�E�x� ��� E�� �
�

��

Z �

�

Z
��S�

�E��E�p�x� � ���� E�E��d�dE ������

The time rate of energy deposition is

d�x� �

Z �

�

Z
���S�

�E�x� ��� E��
s�x� E
��	�x� ��� E�� d��dE� �������

and the energy deposited during a time interval of duration T is

D�x� � T d�x� �������

As explained earlier� the true equations are a little more complicated� and
in particular are coupled systems of linear Boltzmann equations�
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In discussions of dose calculation in the Medical Physics literature� the
underlying system of linear Boltzmann equations is not usually mentioned�
With the codes used in current clinical practice� one typically obtains the
dose directly� that is� without �rst computing the solution of the system of
linear Boltzmann equations� There is a wide variety of di�erent algorithms�
However� they share the following basic ideas� The incoming radiation is
thought of as composed of a �nite number of pencil beams� that is� in�nites�
imally thin� mono�directional� mono�energetic beams� Mathematically� this
means approximation of the boundary data by a �nite sum of 
�functions�
Approximations to the dose distributions due to pencil beams are obtained
by laboratory experiments� numerical experiments using Monte Carlo sim�
ulation� mathematical analysis� or a combination of these approaches� The
overall dose distribution is then obtained by summing such approximations�
For discussions of dose calculation methods of this kind� see Refs� 
��
 and
�for electron beams� 
��
� There is an extensive literature on the math�
ematical analysis of pencil beams� starting with work due to Fermi 
�	
�
see Ref� 
��
 for a survey and references� We studied this subject in Refs�

�
�
�
�

In the past� Monte Carlo methods have been too slow for routine
clinical use� However� the combination of gains in computer speed and
development of faster Monte Carlo methods makes their future widespread
clinical use increasingly likely� see for instance Refs� 
�
� 
�
� and 
��
 for
Monte Carlo methods for particle transport calculations in general� and

��
 for a Monte Carlo method speci�cally for radiation therapy planning�

Grid�based methods for the linear Boltzmann equation� using �nite
di�erence or �nite element discretizations of spatial derivatives and� for
example� discrete ordinates for the collision operator� are rarely mentioned
in the Medical Physics literature� The phase space evolution methods �see
Refs� 
��
 and 
��
� come close to being such schemes� In general� the use
of grid�based deterministic methods requires the development of e�cient
solvers for linear Boltzmann boundary value problems� This subject has
been studied extensively in the Nuclear Engineering literature� see for in�
stance Ref� 
��
 and references given there� However� most of this work
does not apply to the case of strongly forward�peaked scattering� It ap�
pears that this is a gap that needs to be �lled if grid�based deterministic
methods are to become practical for dose calculations� see Refs� 
��
� 
��
�
and 
�
 for methods for simpli�ed �one� and two�dimensional� problems�

One might think that deterministic methods� such as �nite di�erence
or �nite element methods� are not likely to compete well with Monte Carlo
methods because of the large number of phase space dimensions �three
space and three velocity dimensions�� I discussed this argument in detail
in Ref� 
�
� coming to the conclusion that it is not convincing� Therefore
the question which of the two families of methods is preferable remains� at
least in my view� unsettled�

We conclude this section by mentioning that the unit of dose commonly
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used in radiation therapy planning is the Gray� abbreviated Gy�

�Gy � �J�kg �������

For realistic values� see for instance Sec� 	 of Ref� 
��
� One of the cases
discussed there is a brain tumor� for which a dose of ��Gy was prescribed�
with limits on the doses to brainstem and optic nerve of ��Gy and ��Gy�
respectively�

�� Realizable dose distributions� We call the mapping from beam
intensity distributions to dose distributions the dose operator� We call a
dose distribution realizable if there is a realizable beam intensity distri�
bution generating it� Which beam intensity distributions are realizable
depends� of course� on the hardware used to deliver the radiation therapy�
The most obvious constraint is that beam intensities must be non�negative�
Typically there also is an upper bound on the number of beams that can
be used�

Let R denote the set of realizable dose distributions� The question
whether R is convex will be of interest to us in later sections� If the
non�negativity of beam intensities is the only constraint on the treatment
plan� then the set of permitted beam intensity distributions is convex�
and therefore R� being the image of a convex set under the �linear� dose
operator� is convex as well� On the other hand� if there is a bound on the
number of beams� but freedom in choosing beam positions and directions�
then the set of permitted beam intensity distributions is non�convex� and so
is R in general� We brie�y refer to the problem of choosing beam positions
and directions in the presence of a bound on the number of beams as the
beam selection problem� So inclusion of the beam selection problem in the
optimization problem makes R non�convex� The beam selection problem
is discussed extensively in Ref� 
��
�

�� Biological response models� Models attempting to predict the
probabilities of certain events� desirable or undesirable� for a given dose
distribution� are called biological response models� For an introduction to
this aspect of the problem� see for instance Sec� ��� of Ref� 
��
 and Refs�

��
 and 
��
� To illustrate the �avor of these models� we shall consider some
simple examples� They are found in the references given above� although
our notation is a little non�standard here�

We denote the region occupied by the tumor by �t� the region occupied
by healthy tissue by �h� and the region of interest by � � �t ��h� There
may be ambiguity about the extent of a tumor� one can model that by not
requiring that the intersection of �t and �h be empty�

We �rst discuss the tumor control probability �TCP �� Assume that
the tumor contains a very large number of small units called clonogens�
and that the tumor is eradicated if and only if each clonogen is eradicated�
Denote by � the number density of clonogens� Further assume that the
deaths of clonogens are independent random events� and that for a given



THE RADIATION THERAPY PLANNING PROBLEM �

1

k(D)

D

Fig� �	 Probability of killing a single clonogen with dose D�

clonogen� the probability of its death only depends on the dose D received
by it� Denote this probability by k�D�� Suppose now that the tumor
region �t is divided into a large number of subregions �t�k of volume Vk�
k � �� ���� n� Assume that these subregions are so small that the dose and
the clonogen number density in �t�k can be approximated by constants Dk

and �k� but so large that �t�k contains many clonogens� Then

TCP �
nY

k��

k�Dk�
�kVk � exp

nX
k��

�kVk ln k�Dk� ������

A continuous analog of ����� is

TCP � exp

Z
�t

��x� ln k�D�x�� dx ������

In the special case of constant D and �� this reduces to the obvious formula

TCP � k�D�N ������

where N denotes the total number of clonogens� So Eq� ����� gives the
right way of modifying Eq� ����� for non�constant D and �� To complete
the model of the TCP � one has to specify the function k�D�� It is always
taken to be sigmoidal� as sketched in Fig� �� compare for instance Fig� ����
on p� �� of Ref� 
��
�
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Lyman 
��
 proposed a simple formula for normal tissue complication

probabilities �NTCP s�� It is not a fundamental model based on radiobi�
ology� but a data �tting scheme� Lyman�s model applies to cases when a
fraction v� � � v � �� of an organ at risk receives a constant dose D� and
the rest of the organ receives no dose at all� Several ways of extending
this model to the general case of a spatially varying dose have been pro�
posed� The one due to Kutcher and Burman 
�	
 can be shown� after a
small amount of algebra� to be equivalent to

NTCP �
�p
��

Z �hDiLp�D�����

��

exp��t���� dt ������

where hDiLp denotes the Lp�average of the dose over the organ at risk� that
is�

hDiLp � kDkLp
V ��p

������

where V is the volume of the organ at risk� and the parameters p � ��D	� �
�� and 
 � � are adjusted to �t experimental data� �The denominator of
V ��p in Eq� ����� is needed to ensure that hDiLp � C if D�x� � C for all
x�� Eq� ����� predicts that irradiation at a dose with Lp�average D	� leads
to a complication with probability �� � this explains the notation� Table
� of Ref� 
�
 suggests values of the parameters p� 
� and D	� for various
di�erent tissues and organs� The three parameters in Ref� 
�
 are called n�
TD	�� and m� These parameters are related to ours as follows� p � ��n�
D	� � TD	�� and 
 � mTD	�� For example� for the spinal chord� p � ���
D	� � 		��Gy� and 
 � ���	Gy� and for the lungs� p � ����� D	� � ����Gy�
and 
 � ���Gy� The di�erence in the values of p re�ects that for the spinal
chord� even small regions of large dose must be avoided� whereas for the
lungs� the average dose is essentially all that matters�

A di�erent approach is described in Ref� 
��
� Our presentation of it
is close to that of Ref� 
��
� Consider an organ at risk occupying a region
�o in space �or� more generally� any �o � �h�� Assume that the organ at
risk is made up of a large number of small units called functional subunits�

For some organs� such as the spinal chord� it may be appropriate to
assume that signi�cant damage to the organ occurs as soon as one of the
subunits is destroyed� Organs of this kind are said to have a serial struc�
ture 
��
� The probability of no normal tissue complication is then the
probability that all subunits survive� This is analogous to the TCP model
discussed earlier� where the probability of tumor control is the probability
that all clonogens are killed� Following the same arguments that lead to
Eq� ������ denoting by � the number density of subunits� and by s�D� the
probability that a single subunit survives irradiation at dose D� we are lead
to the formula

NTCP � �� exp
Z
�o

��x� ln s�D�x�� dx ����	�
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1

D

s(D)

   

Fig� �	 Survival probability of a single subunit receiving dose D�

It is natural to assume that s is sigmoidal� as shown in Fig� ��

For other organs� such as the lungs� it may be appropriate to assume
that signi�cant damage to the organ occurs only when a certain percentage
of the subunits is destroyed� Organs of this kind are said to have a parallel

structure 
��
� The NTCP might� more generally� be a decreasing function
of the number of surviving subunits� that is�

NTCP � G

�Z
�o

��x� s�D�x�� dx

�
������

where G is a decreasing function�

�� Dose�volume constraints� Biological response models o�er one
way of formulating requirements on the dose distribution� Dose�volume
constraints are an alternative approach� For a given dose distribution� and
a given region in space� for instance the region occupied by the tumor or
by a healthy organ� de�ne v�d� to be the volume fraction that receives a
dose � d� It is clear that v is a decreasing function of d with v��� � �
and v�d� � � for su�ciently large d� In the Medical Physics literature� v is
called a �di�erential� dose�volume histogram� see for instance Sec� ����� of

��
� An upper dose�volume constraint is an inequality of the form

v�d� � vmax�d� for all d ������
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This is appropriate for an organ at risk� A lower dose�volume constraint is
an inequality of the form

v�d� � vmin�d� for all d ������

This is appropriate for a tumor� Notice that a constraint of the form
v�d�� � v� for one particular d� is a special upper dose�volume constraint�
with vmax�d� � v� for d � d�� and vmax�d� � � for d � d�� Similarly�
v�d�� � v� is a special lower dose�volume constraint�

�� Minimizing the distance from an ideal dose distribution�

Ideally� one would� of course� like to achieve the dose distribution

!D�x� �

�
D� in �t �
� in �h �

�	���

where D� is as large as needed to kill the tumor with certainty� but not
very much larger� see for instance Ref� 
��
� It is therefore natural to use�
as a measure of desirability of a dose distribution D� the quantity

��D� � �kD� !Dk�	���

for some function norm k � k� see for instance Ref� 
��
� The minus sign
ensures that larger � means greater desirability� Of course !D is not realiz�
able in general� since radiation must pass through healthy tissue to reach
a tumor that does not lie at the surface of the patient�s body� so in general
the maximum of � is negative�

Assume now that k � k is an Lp�norm�

kD � !Dk � kD � !DkLp��� �
�Z

�

jD � !Djp dx
���p

�	���

for some p � �� Denote the region occupied by the tumor by �t� and the
region occupied by the healthy tissue by �h� Then

kD � !DkpLp��� � kD �D�kpLp��t� � kDk
p
Lp��h�

��	���

Therefore minimizing kD� !DkLp��� is equivalent to assuming that ��TCP
is proportional to kD � D�kpLp��t�� NTCP is proportional to kDkpLp��h��
and maximizing an expression of the form �TCP ��NTCP � where � and
� are positive weights� For p � �� D approximately constant in �t� and
kD�D�kpLp��t� and small kDk

p
Lp��h�

� this can� depending on the parameter

values� closely resemble the use of the biological response models given by
Eqs� ������ ������ and ������ for the TCP � this is illustrated in Fig� ��

It seems to me that the approach of Ref� 
��
 �see also Ref� 
��
� can
essentially be viewed as an improvement on minimizing the distance from
an ideal dose distribution� To see the similarity� compare for instance
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D
0

1

D

Fig� �	 TCP �bold� and �� cjD�D�jp�

Eq� �	��� with the displayed equation following Eq� ���� in 
��
� Notice�
however� that exceeding !D in the tumor is penalized when minimizing the
distance from !D� whereas exceeding the lower dose bound in the tumor is
not penalized in the approach of 
��
� unless there is an upper dose bound
in the tumor� and that bound is exceeded as well� Similarly� there is no
penalty for a positive dose in healthy tissue in the approach of Ref� 
��
� as
long as the upper dose bound in the healthy tissue is not exceeded�

�� Convexity of the set of 	acceptably safe
 dose distribu�

tions� Using biological response models as in Sec� �� we might call a dose
distribution D � R acceptably safe if it satis�es inequalities of the form

NTCPi � �i ������

where the index i labels possible normal tissue complications� and the �i �
��� �� are prescribed bounds� Alternatively� based on Sec� �� D � R could
be called acceptably safe if it satis�es dose�volume constraints

vi�d� � vmax�i�d� ������

where the index i labels organs at risk� and the vmax�i are prescribed de�
creasing functions with values between � and �� Based on Sec� 	� we might
call D � R acceptably safe simply if it satis�es a constraint of the form

kDj�hk � � ������
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where k � k denotes a function norm� Dj�h denotes the restriction of D to
�h� and � � � is a prescribed bound�

Let us denote by A the set of acceptably safe dose distributions� Is
A convex" That is� is a convex combination of acceptably safe dose dis�
tributions acceptably safe" There are two reasons for asking this question�
First� the answer will be useful in Sec� �� Second� the answer may reveal
a �aw in the formulation used� It is desirable that the de�nition of ac�
ceptably safe permit A to be non�convex in some cases� even when R is
convex� Namely� it can be acceptable to sacri�ce a small volume of healthy
tissue� but not a large one� lung tissue is an example� In such a case� two
treatment plans giving large doses to small volumes of healthy tissue may
each be considered acceptably safe� but their average� giving a moderate
dose to a larger volume� may not be� This point is made� explicitly or
implicitly� in several places in the literature on radiation therapy planning�
see for instance the discussion of the di�erence between the prostate and
lung cases in Ref� 
��
� or p� ���	 of Ref� 
��
�

For the remainder of the section� we assume that R is convex� in par�
ticular that the beam selection problem is not included in the optimization
problem� If the de�nition of A is then based on NTCP models as de�ned
by Eqs� ����� and ������ A is assured to be convex� regardless of the param�
eter choices� The same holds if its de�nition is based on ������ regardless
of the choice of norm� or on an improved inequality along the lines of Ref�

��
 �compare the discussion at the end of Sec� 	�� On the other hand� if
the de�nition is based on ������ then A is assured not to be convex� except
in the trivial case when all vmax�i are constant functions� If an NTCP
model of the form ���	� underlies the de�nition of A� convexity of A is as�
sured provided that ln s�D� is a concave �that is� concave�down� function
of D� Whether or not this is the case cannot be deduced from the general
qualitative shape in Fig� �� Finally� if an NTCP model of the form �����
underlies the de�nition of A� then convexity of A is certainly not assured�
since the function s is not everywhere concave�

�� Uniqueness of solutions to the optimization problem� We
conclude with a discussion of conditions that imply uniqueness of the solu�
tion to the radiation therapy optimization problem� From a practical point
of view� this is important because the choice of optimization algorithm
depends on it� For instance� algorithms such as simulated annealing have
been proposed for radiation therapy optimization because of the possibility
of multiple local optima 
��
� As suggested by Niemierko in Ref� 
�	
 and
shown by Deasy in Ref� 
��
� insight into the issue of uniqueness of solu�
tions can be gained from elementary convexity considerations� We shall
present a variation on Deasy�s argument� and point out an issue arising in
this context that seems important and not yet well�understood 
�
�

The issue of uniqueness of the optimal treatment plan can be divided
into two parts as follows� The �rst question is when� and in which sense�
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the optimal realizable dose distribution is unique� The second question is to
which extent� for a given optimal realizable dose distribution� the treatment
plan generating it is unique� This amounts to studying the nullspace of the
dose operator�

To discuss the �rst question� let us assume that our goal is to deter�
mine a dose distribution D � A �see Sec� �� with maximal TCP � This
corresponds to the choice � � TCP if D � A� and � � � otherwise� Other
choices of � could be discussed similarly� Of course� maximizing TCP
means the same as maximizing q�TCP � if q is a strictly increasing func�
tion� If A is convex� then uniqueness of the optimal dose distribution in A
depends on concavity properties of q�TCP � as a functional of the dose dis�
tribution D� Strict concavity rules out multiple local maxima� Non�strict
concavity rules out multiple local maxima with di�erent TCP values�

Two sources of non�convexity of A have already been discussed� First�
R is non�convex if beam selection is included in the optimization problem�
as discussed in Sec� �� But even if R is convex� A can be non�convex�
and ought to be non�convex at least in some cases because of dose�volume
constraints� see Sec� ��

Let us assume now that A is convex for our problem� Using Eq� ������

lnTCP �

Z
�t

��x� ln k�D�x�� dx ������

If k were a concave function� then ����� would be a concave functional of
D� Although k is not concave everywhere �compare Fig� ��� it is concave
where k is close to �� This implies uniqueness of the locally optimal TCP
value at least among dose distributions for which the minimum tumor dose
is not too low�� Things are simpler if we maximize the minimum tumor
dose instead of the TCP over A�

min
x��t

D�x������

is a concave functional of D�
We are currently studying the second question 
�
� Making greatly

simplifying assumptions� including the absence of scattering� the dose op�
erator can be modeled as the dual exponential X�ray transform� see Refs�

��
 and 
��
� The question raised then reduces to studying the nullspace of

�Deasy 
��� proposed using the notion of quasi�concavity instead of concavity	 A
function g 
 g�z�� z � IRl� is called quasi�concave if g��z�������z�� � min�g�z��� g�z���
whenever z� �
 z� and � � � � �� and strictly quasi�concave if strict inequality holds	
Strict quasi�concavity rules out multiple local maxima	 Deasy argued that the TCP � as
a function of beam weights� should be strictly quasi�concave	 His reasoning� however�
seems based on the incorrect assumption that strict monotonicity in each coordinate
direction implies strict quasi�concavity �
���� p	 �����	 A counterexample is g�u�w� 

�� � u���� � w��� u � � and w � �	 This function is strictly increasing in u and w� but
not quasi�concave since g����� ���� 
 ����� � min�g��� ��� g��� ��� 
 min��� �� 
 �	
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this transform� However� the question should also be posed with discrete
sets of permitted beam positions and directions� and with more realistic
dose operators� Even when the nullspace of the dose operator is trivial�
one may ask whether the dose operator has singular values that are nearly
zero� If the answer is yes� then there may be beam intensity distributions
that are signi�cantly di�erent from the optimal one�s�� but generate nearly
optimal dose distributions� Among these beam intensity distributions� one
could then try to �nd a particularly simple one�
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