THE RADIATION THERAPY PLANNING PROBLEM

CHRISTOPH BORGERS*

1. Introduction. The purpose of this paper is to describe mathemat-
ical aspects of radiation therapy planning to readers with a background in
applied mathematics.

The use of X-rays for cancer therapy began a few days after their dis-
covery. Wilhelm Rontgen announced the discovery of X-rays on December
28, 1895, and Emil Grubbe used them for cancer therapy on January 12,
1896 [40]. X-rays are still the most common form of radiation used for can-
cer therapy, but beams of electrons, protons, neutrons, and other particles
are used as well. The planning of the radiation treatment of a tumor begins
with the creation of a three-dimensional image of the tumor and surround-
ing healthy tissue, using techniques such as computed tomography or MRI.
The treatment planning discussed in this article occurs after the imaging
is completed. It involves substantial use of computational algorithms.

Radiation therapy planning requires the study of radiation penetrating
a background (a portion of a patient’s body and the surrounding air, for
instance). Both the radiation and the background are, of course, made up
of particles. We shall distinguish between the two by referring to radiation
particles and background particles. Background particles can be set in rapid
motion as a result of interactions with radiation particles, thereby becoming
radiation particles themselves. The transport of the radiation particles
through the background is described by a system of coupled Boltzmann
transport equations; see for instance Ref. [15], and also Sec. 2 of this article.
A solution of this system is a vector of phase space number densities, that is,
numbers of radiation particles per unit volume in phase space, i.e. position-
direction-energy space. Different components of this vector correspond to
different particle types. Even if the beams aimed at the tumor consist of
one particle type only (for instance photons, as in X-rays), interactions
between radiation particles and the background will set in motion other
types of particles. Careful calculations therefore require consideration of
several types of radiation particles in any case.

Interactions of radiation particles with each other are negligible in this
context. The relevant transport equations are therefore linear. The speed
of the radiation particles is the speed of light (for photons) or a significant
fraction of the speed of light. As a result, a steady state is reached in a time
that is extremely short in comparison with the times for which the beams
are typically turned on during treatment, which are on the order of seconds
or minutes. The relevant transport equations therefore contain no time
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derivatives. Information obtained through imaging, such as the locations
of soft tissue, bone, or air gaps, yields coefficients in these equations.

Radiation therapy is fractionated, that is, delivered in multiple ses-
sions. Furthermore, during a single session, several beam configurations
may be used. A radiation therapy plan specifies beam positions, directions,
energies, etc., as well as when and how long the specified beams are to be
turned on. This can be viewed as specifying a sequence of inflow boundary
value problems for a system of steady linear Boltzmann equations.

The full solutions to these boundary value problems are never consid-
ered in radiation therapy planning. Of greatest interest is the total dose,
that is, the amount of energy per unit background mass deposited, during
the entire course of the treatment, as a result of excitation and ionization
events. In the language of kinetic theory, dose is a macroscopic quantity,
whereas the solution to a linear Boltzmann equation is a mesoscopic quan-
tity. Dose depends on position; to emphasize this dependence, it is often
called the dose distribution.

Strictly speaking, the dose distribution is not all that matters. Bio-
logical effects also depend on the type and energy of radiation used, the
fractionation schedule, etc.; see Chapter 17 of Ref. [23] for a discussion of
these factors. However, in practice it is usually assumed that for a given
type of treatment (for instance, treatment with X-rays of a given energy
range, and using a standard fractionation schedule), the effectiveness of a
given treatment plan can be predicted from the dose distribution alone.

Computing dose distributions is a matter of computational physics,
based on well-understood physical principles. In order to devise a good
treatment plan, one must also be able to evaluate the desirability of a given
dose distribution. This is most typically done by a physician based on
experience and intuition, and is not a matter of rigorous science. However,
one approach to evaluating the desirability of a given dose distribution is
to first estimate, based on clinical data or even radiobiological models, the
probabilities py, ..., p, of certain events, such as eradication of the tumor,
damage to or destruction of healthy organs, pain relief as a result of tumor
size reduction, etc. One can then use a function ¢ = ¢(p1,...,pn) as the
measure of desirability. Obviously ¢ depends on subjective preferences.
Refs. [32] and [38] are basic articles on this sort of approach.

2. Dose calculation. As discussed in the introduction, dose calcu-
lation means the computation of macroscopic information related to the
solution of an inflow boundary value problem for a system of steady linear
Boltzmann equations; see Ref. [28] for a recent survey of this aspect of the
problem, and an extensive literature list. To make this more concrete for
readers not familiar with the linear Boltzmann equation, we shall outline
the derivation of the equation for the special case of a single species of
particles moving through a homogeneous, scattering, non-absorbing back-
ground; see Sec. 1.4 of Ref. [39].
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Consider a particle moving through a background. Assume that the
particle experiences collisions with the background at random times, and
that the times between collisions are independent of each other, exponen-
tially distributed, with an expected value depending on the pre-collision
kinetic energy of the particle. This expected value is called the mean free
time. Assume further that the collisions cause random direction and en-
ergy changes. As a result, the phase space coordinates of the particle, i.e.
its position x € R?, direction w € S2, and energy E > 0, at time ¢ are
random. Denote their probability density by f(x,w, E,t). When a particle
with pre-collision direction w’ € $? and pre-collision energy E' > 0 under-
goes a collision, its post-collision direction w € S? and energy E > 0 are
random, with probability density

(2.1) %p(w-w',E,E') .

This expression depends on the dot product w - ', but not on w and w’
individually, reflecting isotropy of scattering. If we define p = w-w' € [—1,1]
to be the cosine of the angle between the pre- and post-collision directions,
the probability density of the pair (u, E), for a given E', is p(u, E, E'),
without the factor of 1/2w. A particle with kinetic energy £ > 0 has
velocity v(E) and mean free time 7(E). The probability density p(u, E, E')
is close to zero unless p is close to one. That is, the deflection experienced
by a particle in a single collision is likely to be small; see for instance Ref.
[45]. Ome expresses this by saying that the scattering is strongly forward-

peaked.
With the notation introduced above,
(2.2) fe+tv(w-V)f=Qof,
with
L[ fW', E) f(w, E)
E)=— W', E,E' ’ 'dE' — S
@@ =5 [ [ s m i avar - L0
(2.3)

In Eq. (2.3), we have omitted the dependence on x and ¢ for notational
simplicity. The left-hand side in Eq. (2.2) corresponds to the streaming of
the particle between collisions. On the right-hand side of Eq. (2.3), the term
with the minus sign corresponds to the particle being “lost” by entering a
collision, and the integral corresponds to the particle “re-emerging” from
a collision with altered direction and energy. Up to now, we have thought
of a single particle, and of f as the probability density function of its
phase space location. Alternatively, we can think of a very large number of
particles, independent of each other, and of f as their phase space number
density. This is how we shall think from now on.
It is customary to introduce the independent variable

(2.4) Y =vf,
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called the flux, and the quantity
(2.5) os(E) =

called the scattering cross-section. Using this notation, and dropping the
time derivative, Eq. (2.2) becomes

(2.6 (0 VI =Qp,

where

e Quem =5 [ / P B By (B )
—0s(E)¢Y(w, E) .

Background inhomogeneity makes o, and p functions of x.

Let © C R® be a bounded region with a smooth boundary Q. Let n =
n(x), x € 09, denote the exterior unit normal vector field on 9. A well-
posed boundary value problem for 1) = 9 (x,w, E), (x,w, E) € @ xSZx R,
is obtained by supplementing Eq. (2.6) with the inflow boundary condition

(2.8)  Y(x,w,E) = g(x,w, E) forx € 90, w € §%, wn(x) <0, E>0.

For the mathematical theory of inflow boundary value problems for linear
Boltzmann equations, see for instance Chapter 21 of Ref. [13]

To illustrate how dose distributions can be obtained from the solutions
to boundary value problems for linear Boltzmann equations, let us compute
an expression for the time rate at which the particles deposit energy in the
background in our simplified setting. The expected amount of energy lost
by a particle with pre-collision direction w' and pre-collision energy E' in
a collision is

— 1

(29) AE(x,J,E')=— / / (E'-E)p(x,w-w',E,E")dwdFE .
2w weS?

The time rate of energy deposition is

(2.10) d(x) = / / AE(x,w',E") 05(x, E") ¢(x,0', E') dw'dE" ,
€82

and the energy deposited during a time interval of duration T is

(2.11) D(x) =Td(x) .

As explained earlier, the true equations are a little more complicated, and
in particular are coupled systems of linear Boltzmann equations.
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In discussions of dose calculation in the Medical Physics literature, the
underlying system of linear Boltzmann equations is not usually mentioned.
With the codes used in current clinical practice, one typically obtains the
dose directly, that is, without first computing the solution of the system of
linear Boltzmann equations. There is a wide variety of different algorithms.
However, they share the following basic ideas. The incoming radiation is
thought of as composed of a finite number of pencil beams, that is, infinites-
imally thin, mono-directional, mono-energetic beams. Mathematically, this
means approximation of the boundary data by a finite sum of é-functions.
Approximations to the dose distributions due to pencil beams are obtained
by laboratory experiments, numerical experiments using Monte Carlo sim-
ulation, mathematical analysis, or a combination of these approaches. The
overall dose distribution is then obtained by summing such approximations.
For discussions of dose calculation methods of this kind, see Refs. [24] and
(for electron beams) [22]. There is an extensive literature on the math-
ematical analysis of pencil beams, starting with work due to Fermi [16];
see Ref. [22] for a survey and references. We studied this subject in Refs.
[5]-[7]-

In the past, Monte Carlo methods have been too slow for routine
clinical use. However, the combination of gains in computer speed and
development of faster Monte Carlo methods makes their future widespread
clinical use increasingly likely; see for instance Refs. [1], [2], and [30] for
Monte Carlo methods for particle transport calculations in general, and
[35] for a Monte Carlo method specifically for radiation therapy planning.

Grid-based methods for the linear Boltzmann equation, using finite
difference or finite element discretizations of spatial derivatives and, for
example, discrete ordinates for the collision operator, are rarely mentioned
in the Medical Physics literature. The phase space evolution methods (see
Refs. [20] and [21]) come close to being such schemes. In general, the use
of grid-based deterministic methods requires the development of efficient
solvers for linear Boltzmann boundary value problems. This subject has
been studied extensively in the Nuclear Engineering literature; see for in-
stance Ref. [27] and references given there. However, most of this work
does not apply to the case of strongly forward-peaked scattering. It ap-
pears that this is a gap that needs to be filled if grid-based deterministic
methods are to become practical for dose calculations; see Refs. [25], [34],
and [3] for methods for simplified (one- and two-dimensional) problems.

One might think that deterministic methods, such as finite difference
or finite element methods, are not likely to compete well with Monte Carlo
methods because of the large number of phase space dimensions (three
space and three velocity dimensions). I discussed this argument in detail
in Ref. [4], coming to the conclusion that it is not convincing. Therefore
the question which of the two families of methods is preferable remains, at
least in my view, unsettled.

We conclude this section by mentioning that the unit of dose commonly
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used in radiation therapy planning is the Gray, abbreviated Gy:
(2.12) 1Gy = 1J/kg .

For realistic values, see for instance Sec. 6 of Ref. [29]. One of the cases
discussed there is a brain tumor, for which a dose of 90Gy was prescribed,
with limits on the doses to brainstem and optic nerve of 20Gy and 10Gy,
respectively.

3. Realizable dose distributions. We call the mapping from beam
intensity distributions to dose distributions the dose operator. We call a
dose distribution realizable if there is a realizable beam intensity distri-
bution generating it. Which beam intensity distributions are realizable
depends, of course, on the hardware used to deliver the radiation therapy.
The most obvious constraint is that beam intensities must be non-negative.
Typically there also is an upper bound on the number of beams that can
be used.

Let R denote the set of realizable dose distributions. The question
whether R is convex will be of interest to us in later sections. If the
non-negativity of beam intensities is the only constraint on the treatment
plan, then the set of permitted beam intensity distributions is convex,
and therefore R, being the image of a convex set under the (linear) dose
operator, is convex as well. On the other hand, if there is a bound on the
number of beams, but freedom in choosing beam positions and directions,
then the set of permitted beam intensity distributions is non-convex, and so
is R in general. We briefly refer to the problem of choosing beam positions
and directions in the presence of a bound on the number of beams as the
beam selection problem. So inclusion of the beam selection problem in the
optimization problem makes R non-convex. The beam selection problem
is discussed extensively in Ref. [29].

4. Biological response models. Models attempting to predict the
probabilities of certain events, desirable or undesirable, for a given dose
distribution, are called biological response models. For an introduction to
this aspect of the problem, see for instance Sec. 1.1 of Ref. [42] and Refs.
[37] and [41]. To illustrate the flavor of these models, we shall consider some
simple examples. They are found in the references given above, although
our notation is a little non-standard here.

We denote the region occupied by the tumor by €2, the region occupied
by healthy tissue by 2, and the region of interest by Q = Q; U Q. There
may be ambiguity about the extent of a tumor; one can model that by not
requiring that the intersection of Q; and €, be empty.

We first discuss the tumor control probability (TCP). Assume that
the tumor contains a very large number of small units called clonogens,
and that the tumor is eradicated if and only if each clonogen is eradicated.
Denote by p the number density of clonogens. Further assume that the
deaths of clonogens are independent random events, and that for a given
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k(D)

F1a. 1. Probability of killing a single clonogen with dose D.

clonogen, the probability of its death only depends on the dose D received
by it. Denote this probability by k(D). Suppose now that the tumor
region (); is divided into a large number of subregions 2; ; of volume V},
k =1,...,n. Assume that these subregions are so small that the dose and
the clonogen number density in € ; can be approximated by constants D,
and pg, but so large that € ;, contains many clonogens. Then

(4.1) TCP =~ [[ k(Dx)*"* =exp ) piViInk(Dy) -
k=1 k=1

A continuous analog of (4.1) is
(4.2) TCP = exp/ p(x) Ink(D(x)) dx .
Q4

In the special case of constant D and p, this reduces to the obvious formula
(4.3) TCP = k(D) ,

where N denotes the total number of clonogens. So Eq. (4.2) gives the
right way of modifying Eq. (4.3) for non-constant D and p. To complete
the model of the T'C'P, one has to specify the function k(D). It is always
taken to be sigmoidal, as sketched in Fig. 1; compare for instance Fig. 1.18
on p. 37 of Ref. [42].
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Lyman [31] proposed a simple formula for normal tissue complication
probabilities (NTCPs). It is not a fundamental model based on radiobi-
ology, but a data fitting scheme. Lyman’s model applies to cases when a
fraction v, 0 < v < 1, of an organ at risk receives a constant dose D, and
the rest of the organ receives no dose at all. Several ways of extending
this model to the general case of a spatially varying dose have been pro-
posed. The one due to Kutcher and Burman [26] can be shown, after a
small amount of algebra, to be equivalent to

(44) cp=—L [T ey
4.4 NTCP = — exp(—t2/2) dt ,
V2r [oo

where (D) r» denotes the LP-average of the dose over the organ at risk, that
is:

(45) <D>LP -

vi/e

where V is the volume of the organ at risk, and the parameters p > 0, D5 >
0, and o > 0 are adjusted to fit experimental data. (The denominator of
VP in Eq. (4.5) is needed to ensure that (D)z», = C if D(x) = C for all
x.) Eq. (4.4) predicts that irradiation at a dose with LP-average Dy leads
to a complication with probability 50%; this explains the notation. Table
1 of Ref. [9] suggests values of the parameters p, o, and D5y for various
different tissues and organs. The three parameters in Ref. [9] are called n,
T D5y, and m. These parameters are related to ours as follows: p = 1/n,
D59 = T D5g, and 0 = mT Dyg. For example, for the spinal chord, p = 20,
D5¢ = 66.5Gy, and 0 = 11.6Gy, and for the lungs, p = 1.15, D5q = 24.5Gy,
and o = 4.4Gy. The difference in the values of p reflects that for the spinal
chord, even small regions of large dose must be avoided, whereas for the
lungs, the average dose is essentially all that matters.

A different approach is described in Ref. [44]. Our presentation of it
is close to that of Ref. [41]. Consider an organ at risk occupying a region
Q, in space (or, more generally, any Q, C Q). Assume that the organ at
risk is made up of a large number of small units called functional subunits.

For some organs, such as the spinal chord, it may be appropriate to
assume that significant damage to the organ occurs as soon as one of the
subunits is destroyed. Organs of this kind are said to have a serial struc-
ture [42]. The probability of no normal tissue complication is then the
probability that all subunits survive. This is analogous to the TC'P model
discussed earlier, where the probability of tumor control is the probability
that all clonogens are killed. Following the same arguments that lead to
Eq. (4.2), denoting by p the number density of subunits, and by s(D) the
probability that a single subunit survives irradiation at dose D, we are lead
to the formula

(4.6) NTCP=1- exp/ p(x) Ins(D(x)) dx .

o
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s(D)

F1G. 2. Survival probability of a single subunit receiving dose D.

It is natural to assume that s is sigmoidal, as shown in Fig. 2.

For other organs, such as the lungs, it may be appropriate to assume
that significant damage to the organ occurs only when a certain percentage
of the subunits is destroyed. Organs of this kind are said to have a parallel
structure [42]. The NTC P might, more generally, be a decreasing function
of the number of surviving subunits, that is:

(4.7) NTCP =G (/Q p(x) s(D(x)) dx) ,

o
where G is a decreasing function.

5. Dose-volume constraints. Biological response models offer one
way of formulating requirements on the dose distribution. Dose-volume
constraints are an alternative approach. For a given dose distribution, and
a given region in space, for instance the region occupied by the tumor or
by a healthy organ, define v(d) to be the volume fraction that receives a
dose > d. Tt is clear that v is a decreasing function of d with v(0) = 1
and v(d) = 0 for sufficiently large d. In the Medical Physics literature, v is
called a (differential) dose-volume histogram; see for instance Sec. 1.1.9 of
[42]. An upper dose-volume constraint is an inequality of the form

(5.1) v(d) < Umaz(d) foralld .
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This is appropriate for an organ at risk. A lower dose-volume constraint is
an inequality of the form

(5.2) v(d) > vmin(d) for all d .

This is appropriate for a tumor. Notice that a constraint of the form
v(dp) < vg for one particular dy is a special upper dose-volume constraint,
with vpe.(d) = v for d > dp, and vpe(d) = 1 for d < dp. Similarly,
v(dp) > vp is a special lower dose-volume constraint.

6. Minimizing the distance from an ideal dose distribution.
Ideally, one would, of course, like to achieve the dose distribution

~ _ DO in Qt s
(6.1) D(x) = { 0 in Q|
where Dy is as large as needed to kill the tumor with certainty, but not
very much larger; see for instance Ref. [17]. It is therefore natural to use,
as a measure of desirability of a dose distribution D, the quantity

(6.2) (D) = —||D — D||

for some function norm || - ||; see for instance Ref. [19]. The minus sign
ensures that larger ¢ means greater desirability. Of course D is not realiz-
able in general, since radiation must pass through healthy tissue to reach
a tumor that does not lie at the surface of the patient’s body, so in general
the maximum of ¢ is negative.

Assume now that || - || is an LP-norm:

1/p
63) 1D - Dl =D - Dllgwe = [ / |D—D|de]

for some p > 1. Denote the region occupied by the tumor by €2;, and the
region occupied by the healthy tissue by Q. Then

(6.4) 1D — b“IL),P(Q) = 1D = Doll7s(q,) + 1PNL0(q,) -

Therefore minimizing || D — D|| L»(0) is equivalent to assuming that 1-7CP
is proportional to ||D — D0||’I’lp(9t), NTCP is proportional to ||D||’zp(9h),
and maximizing an expression of the form o TCP — 3NTCP, where o and
(B are positive weights. For p > 1, D approximately constant in 2;, and
||D—D0||’I’lp(9t) and small ||D||€F(Qh), this can, depending on the parameter
values, closely resemble the use of the biological response models given by
Egs. (4.2), (4.4), and (4.5); for the TC P, this is illustrated in Fig. 3.

It seems to me that the approach of Ref. [11] (see also Ref. [10]) can
essentially be viewed as an improvement on minimizing the distance from
an ideal dose distribution. To see the similarity, compare for instance
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DO

FiG. 3. TCP (bold) and 1 — c|D — Dy|P.

Eq. (6.2) with the displayed equation following Eq. (40) in [11]. Notice,
however, that exceeding D in the tumor is penalized when minimizing the
distance from D, whereas exceeding the lower dose bound in the tumor is
not penalized in the approach of [11], unless there is an upper dose bound
in the tumor, and that bound is exceeded as well. Similarly, there is no
penalty for a positive dose in healthy tissue in the approach of Ref. [11], as
long as the upper dose bound in the healthy tissue is not exceeded.

7. Convexity of the set of “acceptably safe” dose distribu-
tions. Using biological response models as in Sec. 4, we might call a dose
distribution D € R acceptably safe if it satisfies inequalities of the form

where the index ¢ labels possible normal tissue complications, and the ¢; €
(0,1) are prescribed bounds. Alternatively, based on Sec. 5, D € R could
be called acceptably safe if it satisfies dose-volume constraints

(72) Ui(d) < 'Umaz,i(d) ,

where the index 7 labels organs at risk, and the v, ; are prescribed de-
creasing functions with values between 0 and 1. Based on Sec. 6, we might
call D € R acceptably safe simply if it satisfies a constraint of the form

(7.3) I1D]a, [l <€,
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where || - || denotes a function norm, D|q, denotes the restriction of D to
Qp, and € > 0 is a prescribed bound.

Let us denote by A the set of acceptably safe dose distributions. Is
A convex? That is, is a convex combination of acceptably safe dose dis-
tributions acceptably safe? There are two reasons for asking this question.
First, the answer will be useful in Sec. 8. Second, the answer may reveal
a flaw in the formulation used. It is desirable that the definition of ac-
ceptably safe permit A to be non-convex in some cases, even when R is
convex. Namely, it can be acceptable to sacrifice a small volume of healthy
tissue, but not a large one; lung tissue is an example. In such a case, two
treatment plans giving large doses to small volumes of healthy tissue may
each be considered acceptably safe, but their average, giving a moderate
dose to a larger volume, may not be. This point is made, explicitly or
implicitly, in several places in the literature on radiation therapy planning;
see for instance the discussion of the difference between the prostate and
lung cases in Ref. [33], or p. 1296 of Ref. [41].

For the remainder of the section, we assume that R is convex, in par-
ticular that the beam selection problem is not included in the optimization
problem. If the definition of A is then based on NT'C'P models as defined
by Egs. (4.4) and (4.5), A is assured to be convex, regardless of the param-
eter choices. The same holds if its definition is based on (7.3), regardless
of the choice of norm, or on an improved inequality along the lines of Ref.
[11] (compare the discussion at the end of Sec. 6). On the other hand, if
the definition is based on (7.2), then A is assured not to be convex, except
in the trivial case when all vy, ; are constant functions. If an NTCP
model of the form (4.6) underlies the definition of A, convexity of A is as-
sured provided that ln s(D) is a concave (that is, concave-down) function
of D. Whether or not this is the case cannot be deduced from the general
qualitative shape in Fig. 2. Finally, if an NT'CP model of the form (4.7)
underlies the definition of A, then convexity of A is certainly not assured,
since the function s is not everywhere concave.

8. Uniqueness of solutions to the optimization problem. We
conclude with a discussion of conditions that imply uniqueness of the solu-
tion to the radiation therapy optimization problem. From a practical point
of view, this is important because the choice of optimization algorithm
depends on it. For instance, algorithms such as simulated annealing have
been proposed for radiation therapy optimization because of the possibility
of multiple local optima [43]. As suggested by Niemierko in Ref. [36] and
shown by Deasy in Ref. [14], insight into the issue of uniqueness of solu-
tions can be gained from elementary convexity considerations. We shall
present a variation on Deasy’s argument, and point out an issue arising in
this context that seems important and not yet well-understood [8].

The issue of uniqueness of the optimal treatment plan can be divided
into two parts as follows. The first question is when, and in which sense,
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the optimal realizable dose distribution is unique. The second question is to
which extent, for a given optimal realizable dose distribution, the treatment
plan generating it is unique. This amounts to studying the nullspace of the
dose operator.

To discuss the first question, let us assume that our goal is to deter-
mine a dose distribution D € A (see Sec. 7) with maximal TCP. This
corresponds to the choice o = TCP if D € A, and ¢ = 0 otherwise. Other
choices of ¢ could be discussed similarly. Of course, maximizing T'C P
means the same as maximizing q(T'CP) if q is a strictly increasing func-
tion. If A is convex, then uniqueness of the optimal dose distribution in 4
depends on concavity properties of ¢(T'C P) as a functional of the dose dis-
tribution D. Strict concavity rules out multiple local maxima. Non-strict
concavity rules out multiple local maxima with different 7C P values.

Two sources of non-convexity of A have already been discussed. First,
‘R is non-convex if beam selection is included in the optimization problem,
as discussed in Sec. 3. But even if R is convex, A can be non-convex,
and ought to be non-convex at least in some cases because of dose-volume
constraints; see Sec. 7.

Let us assume now that A is convex for our problem. Using Eq. (4.2),

(8.1) InTCP = p(x) Ink(D(x)) dx .
Qs

If k were a concave function, then (8.1) would be a concave functional of
D. Although k is not concave everywhere (compare Fig. 1), it is concave
where k is close to 1. This implies uniqueness of the locally optimal T'C' P
value at least among dose distributions for which the minimum tumor dose
is not too low.! Things are simpler if we maximize the minimum tumor
dose instead of the TCP over A:

(8.2) )Icrelglt D(x)

is a concave functional of D.

We are currently studying the second question [8]. Making greatly
simplifying assumptions, including the absence of scattering, the dose op-
erator can be modeled as the dual exponential X-ray transform; see Refs.
[12] and [29]. The question raised then reduces to studying the nullspace of

1Deasy [14] proposed using the notion of quasi-concavity instead of concavity. A
function g = g(z), z € R/, is called quasi-concave if g(9z1+(1—8)z2) > min(g(z1), g(z2))
whenever z; # z2 and 0 < € < 1, and strictly quasi-concave if strict inequality holds.
Strict quasi-concavity rules out multiple local maxima. Deasy argued that the TC'P, as
a function of beam weights, should be strictly quasi-concave. His reasoning, however,
seems based on the incorrect assumption that strict monotonicity in each coordinate
direction implies strict quasi-concavity ([14], p. 1159). A counterexample is g(u,w) =
(1 +u?)(1 4+ w?), w > 0 and w > 0. This function is strictly increasing in u and w, but
not quasi-concave since g(1/2,1/2) = 25/16 < min(g(1,0),¢(0,1)) = min(2,2) = 2.
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this transform. However, the question should also be posed with discrete
sets of permitted beam positions and directions, and with more realistic
dose operators. Even when the nullspace of the dose operator is trivial,
one may ask whether the dose operator has singular values that are nearly
zero. If the answer is yes, then there may be beam intensity distributions
that are significantly different from the optimal one(s), but generate nearly
optimal dose distributions. Among these beam intensity distributions, one
could then try to find a particularly simple one.
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